Show simple item record

dc.contributor.authorNieto-Chaupis, Huber
dc.date.accessioned2022-03-03T17:59:12Z
dc.date.available2022-03-03T17:59:12Z
dc.date.issued2020
dc.identifier.citationNieto-Chaupis, H. (2019, December). Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria. In International Conference on Smart Technologies, Systems and Applications (pp. 364-374). Springer, Cham.es_PE
dc.identifier.isbn978-3-030-46785-2
dc.identifier.urihttps://hdl.handle.net/20.500.13067/1714
dc.description.abstractCommonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some assistance of well designed and intelligent codes that save time and resources in high energy physics experiments. In this paper we present one application of the Mitchell’s criteria to extract efficiently beyond Standard Model signal events yielding an error of order of 1.22%. The usage of Machine Learning schemes appears to be advantageous when large volumes of data need to be scrutinized.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherSpringeres_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/es_PE
dc.sourceAUTONOMAes_PE
dc.subjectData analysises_PE
dc.subjectParticle Physics Experimentses_PE
dc.subjectMachine learninges_PE
dc.titleData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteriaes_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.identifier.journalCommunications in Computer and Information Sciencees_PE
dc.identifier.doihttps://doi.org/10.1007/978-3-030-46785-2_29
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
dc.publisher.countryPEes_PE
dc.relation.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084805724&doi=10.1007%2f978-3-030-46785-2_29&partnerID=40&md5es_PE
dc.source.volume1154es_PE
dc.source.beginpage364es_PE
dc.source.endpage374es_PE


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/restrictedAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/restrictedAccess