Show simple item record

dc.contributor.authorChamorro-Atalaya, Omar
dc.contributor.authorOlivares-Zegarra, Soledad
dc.contributor.authorParedes-Soria, Alejandro
dc.contributor.authorSamanamud-Loyola, Oscar
dc.contributor.authorAnton-De los Santos, Marco
dc.contributor.authorAnton-De los Santos, Juan
dc.contributor.authorFierro-Bravo, Maritte
dc.contributor.authorVillanueva-Acosta, Victor
dc.date.accessioned2022-03-02T13:51:34Z
dc.date.available2022-03-02T13:51:34Z
dc.date.issued2021-12
dc.identifier.citationChamorro-Atalaya, O., Olivares-Zegarra, S., Paredes-Soria, A., Samanamud-Loyola, O., Anton-De los Santos, M., Anton-De los Santos, J., Fierro-Bravo, M. & Villanueva-Acosta, V. (2021). “Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students” International Journal of Advanced Computer Science and Applications (IJACSA), 12(12), 718-725. http://dx.doi.org/10.14569/IJACSA.2021.0121289es_PE
dc.identifier.issn2156-5570
dc.identifier.urihttps://hdl.handle.net/20.500.13067/1681
dc.description.abstract—In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherThe Science and Information Organizationes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/es_PE
dc.sourceAUTONOMAes_PE
dc.subjectClassification learneres_PE
dc.subjectPredictive systemes_PE
dc.subjectPersonal and social attitudeses_PE
dc.subjectEngineering studentses_PE
dc.titleSupervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Studentses_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.identifier.journalInternational Journal of Advanced Computer Science and Applications (IJACSA)es_PE
dc.identifier.doihttps://doi.org/10.14569/IJACSA.2021.0121289
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
dc.publisher.countryPEes_PE
dc.relation.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85122573471&doi=10.14569%2fIJACSA.2021.0121289&partnerID=40&md5es_PE
dc.source.volume12es_PE
dc.source.issue12es_PE
dc.source.beginpage718es_PE
dc.source.endpage725es_PE


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess