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Abstract: This study evaluates the effectiveness of advanced statistical and geospatial
methods for analyzing radon concentration distributions in indoor environments, using the
district of San Martín de Porres, Lima, Peru, as a case study. Radon levels were monitored
using LR-115 nuclear track detectors over three distinct measurement periods between
2015 and 2016, with 86 households participating. Detectors were randomly placed in
various rooms within each household. Normality tests (Shapiro–Wilk, Anderson–Darling,
and Kolmogorov–Smirnov) were applied to assess the fit of radon concentrations to a
log-normal distribution. Additionally, analysis of variance (ANOVA) was used to evaluate
the influence of environmental and structural factors on radon variability. Non-normally
distributed data were normalized using a Box–Cox transformation to improve statistical as-
sumptions, enabling subsequent geostatistical analyses. Geospatial interpolation methods,
specifically Inverse Distance Weighting (IDW) and Kriging, were employed to map radon
concentrations. The results revealed significant temporal variability in radon concentra-
tions, with geometric means of 146.4 Bq·m−3, 162.3 Bq·m−3, and 150.8 Bq·m−3, respectively,
across the three periods. Up to 9.5% of the monitored households recorded radon levels
exceeding the safety threshold of 200 Bq·m−3. Among the interpolation methods, Kriging
provided a more accurate spatial representation of radon concentration variability com-
pared to IDW, allowing for the precise identification of high-risk areas. This study provides
a framework for using advanced statistical and geospatial techniques in environmental
risk assessment.

Keywords: radon; statistical methods; environmental monitoring; geostatistical mapping;
public health

1. Introduction
In the past two decades, increasing attention has been directed toward investigating

and measuring levels of radon gas (222Rn) due to the recognized health risks associated
with its accumulation in indoor environments. Radon is a naturally occurring radioactive
gas, and extensive research has established a well-founded link between radon exposure
and an elevated risk of certain cancers, particularly lung and gastric cancers [1]. Since 1986,
the World Health Organization (WHO) has classified radon as a Group 1 carcinogen [2],
highlighting the urgency of addressing this issue from a public health perspective. This
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consensus is upheld by international expert bodies such as the United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR) [3], the International Com-
mission on Radiological Protection (ICRP) [4], the International Atomic Energy Agency
(IAEA) [5], and the United States Environmental Protection Agency (EPA) [6], all affirm-
ing that any level of radon exposure carries a potential health risk. Consequently, these
organizations have initiated actions to mitigate the risks associated with 222Rn exposure,
emphasizing the importance of maintaining safe indoor environments for both living and
working [7].

Therefore, understanding the factors influencing indoor radon levels is important for
effective risk assessment and management. The 222Rn concentration in enclosed spaces
is determined by a complex interaction of variables, including building characteristics,
soil properties, geological formations, and environmental conditions such as temperature
and humidity [8–11]. Analyzing these factors and their interrelationships makes it possi-
ble to predict indoor radon levels or estimate the likelihood of exceeding specific radon
thresholds. Furthermore, while these factors operate independently, their combined effects
ultimately shape the final radon concentration in any given space. This complexity suggests
that indoor radon levels are better modeled using a log-normal distribution, given the
skewness observed in radon data due to the random nature of emission sources and indoor
accumulation patterns [12].

Numerous studies have applied various statistical methods to analyze these interac-
tions and model radon distribution, with the log-normal distribution being one of the most
widely used approaches. To confirm the suitability of this model, normality tests such as
the Shapiro–Wilk and Anderson–Darling tests have been employed, verifying whether
the data adequately fit a log-normal distribution [13]. Moreover, previous studies have
employed parametric estimation techniques to estimate the proportion of homes surpassing
a specific radon concentration threshold [14–16]. Additionally, techniques such as analysis
of variance (ANOVA) have been used to determine the influence of specific factors, such as
building type or ventilation, on indoor radon concentration [17–19]. ANOVA has proven
particularly useful in comparing different groups, as it helps identify the factors that signif-
icantly impact the observed variability in radon levels [20,21]. Furthermore, in geospatial
studies, methods such as Inverse Distance Weighting (IDW) and Kriging have been widely
applied to interpolate radon concentrations in regions where direct measurement data are
unavailable [22–24]. While IDW is valued for its simplicity and efficiency, Kriging is often
preferred when more precise estimates are required, as it models the spatial variability of
radon levels by considering both the distance and spatial correlation between measurement
points [25,26]. Therefore, these methods are essential for developing risk maps that guide
targeted interventions in the most affected areas.

Recent studies conducted in various countries have utilized these statistical methods
to integrate multiple parameters, including housing characteristics, soil composition, geo-
logical data, and gamma dose rates [27–31]. By combining these factors, researchers have
established comprehensive frameworks that enhance understanding of radon distribution
patterns and identify high-risk areas. This approach has proven effective in capturing the
inherent variability of radon concentrations and developing robust predictive models.

Thus, this research aims to explore and identify the most suitable statistical techniques
to model indoor radon distribution in Lima, Peru. Specifically, radon concentration mea-
surements obtained using trace detectors are analyzed alongside factors specific to the
homes and lifestyles of the occupants. The log-normal distribution is applied to characterize
radon concentrations, and normality tests are performed to validate this choice. Addition-
ally, the proportion of households exceeding a specific radon concentration threshold is
estimated using parametric and non-parametric estimation techniques, thereby providing a
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detailed analysis of exposure risks in densely populated urban areas. Furthermore, analysis
of variance (ANOVA) is employed to determine the significant influence of factors such as
building type, ventilation, and geographic location on the variability of radon levels. Finally,
spatial interpolation methods, including Inverse Distance Weighting (IDW) and Kriging,
generate risk maps, identifying areas with potentially elevated radon concentrations.

2. Materials and Methods
2.1. Data

In the present study, conducted in San Martín de Porres, Lima, Peru, starting in mid-
October 2015, three consecutive 45-day measurement periods were used to assess indoor
radon activity concentrations utilizing the non-strippable kodak LR-115 Type 2 detector.
This detector was attached to a plastic film slide and positioned on walls approximately
1.5 m above the floor in bare mode (1.5 cm × 1.5 cm). The first measurement period began
in mid-October 2015, capturing radon levels during spring. The second period immediately
started in early December, extending into late spring. The third and final period began in
late January 2016, covering early summer, allowing the study to capture seasonal variations
in radon levels specific to the Peruvian climate. Each detector was exposed for 45 days at
the study site, covering these different measurement periods. This sequential approach
allowed for observing variations in indoor radon concentrations due to environmental
and seasonal changes from spring to summer. The voluntary participation of numerous
households provided a broad view of radon levels across different times of the year. Radon
detectors were randomly placed in any available spaces within each household, such as
bedrooms, living rooms, kitchens, or other rooms. This random assignment of detectors
ensured that the measurements were not influenced by subjective factors or the deliberate
choice of specific spaces, thus providing a more balanced evaluation of indoor radon
concentrations. After each 45-day exposure period, the LR-115 detectors in bare mode were
chemically etched to reveal alpha particle tracks. The etching process involved immersing
the detectors in a 2.5 N sodium hydroxide (NaOH) solution at 60 ◦C for 90 min, utilizing a
thermostatic bath with a temperature control fluctuation of ±0.5 ◦C. Upon completion of
the etching, the detectors were thoroughly rinsed with distilled water to stop the process
and remove any residual NaOH. The background track density for unexposed detectors
was measured at 1.5 tracks cm−2, subtracted from the total track density to account for
background noise. The minimum measurable radon activity concentration for this setup
was calculated at 20 Bq/m3 for a 45-day exposure period. The uncertainty budget for
the radon measurements was estimated at ±35%, considering calibration factor uncertainty
and track counting variability. Disregarding the contribution of the Radon-220 progeny
and considering the partial sensitivity of the detector and the equilibrium factor within the
proposed range, the calibration factor was estimated at 0.038 ± 0.005 tracks cm−2·Bq−1·d−1·m3

(see [32] for more detail). For track counting, each etched detector was photographed at
50 distinct regions using a Leica microscope, capturing high-resolution images to ensure
an accurate representation of track distribution across the surface. Subsequently, these
images were analyzed in ImageJ version 1.51a [33], an open-source image analysis software,
where the tracks were identified based on circularity and size criteria and track density was
calculated (ρ). Following a precise calibration, this automated identification enabled the
accurate counting and assessment of radon concentrations based on track density across
the detector. Radon concentration was calculated using the following equation:

CRn =
ρ

K · t
(1)

where ρ is track density, K is the calibration factor, and t is the duration of exposure (days).
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2.2. Statistical Analysis Methods
2.2.1. The Log-Normal Distribution and Considerations for Normality Tests

The log-normal distribution is commonly employed to model environmental variables
that are inherently non-negative, such as radon concentrations. The probability density
function for a random variable x, which follows a log-normal distribution Ln(µ, σ2), is
given by [12]

f (x) =
1

xσ
√

2π
exp

(
− (ln x − µ)2

2σ2

)
, x > 0 (2)

In this formula, µ and σ denote the mean and standard deviation of the natural
logarithm of x, respectively. The geometric mean (GM) and geometric standard deviation
(GSD) can be calculated as GM = exp(µ) and GSD = exp(σ).

Before conducting statistical analyses assuming a log-normal distribution, verifying
that the log-transformed data fit a normal distribution is essential. This is because many
statistical tests and models require normality of the data to ensure the validity of the results.
To confirm this assumption, key normality tests are applied, including the following.

2.2.2. Anderson–Darling Test

The Anderson–Darling test is given by the following statistic:

A2 = −n −
n

∑
i=1

(2i − 1)
n

[ln(F(yi)) + ln(1 − F(yn+1−i))] (3)

where n is the sample size, F(yi) is the cumulative distribution function (CDF) of the
normal distribution evaluated at the i-th ordered data point yi. And yn+1−i represents the
data points in descending order. The Anderson–Darling test is a statistical method used
to determine how well a set of data fits a particular distribution—in this case, the normal
distribution. It is especially sensitive to discrepancies in the tails of the distribution, making
it well suited for datasets that include extreme values [34]. The null hypothesis is rejected
if the adjusted Anderson–Darling statistic (Adj2) exceeds the critical value corresponding
to a 5% significance level (approximately 0.751). The latter indicates that the data do not
follow a normal distribution, with a 5% probability of committing a Type I error.

2.2.3. Kolmogorov–Smirnov (K-S) Test

The Kolmogorov–Smirnov test is a non-parametric method used to evaluate the
goodness-of-fit between an empirical sample distribution and a reference probability distri-
bution—in this case, the normal distribution of log-transformed radon concentrations.The
Kolmogorov–Smirnov test statistic (D) is defined as

D = max |Fn(x)− F(x)| (4)

where Fn(x) is the empirical cumulative distribution function (ECDF) derived from the
sample data and F(x) is the cumulative distribution function (CDF) of the theoretical
normal distribution. The calculated D value is compared against a critical value based
on the chosen significance level (commonly 5%) and the sample size to interpret the test
results. If D exceeds this critical value, the null hypothesis—that the log-transformed radon
data follow a normal distribution—is rejected. This indicates a significant deviation from
normality, suggesting that alternative statistical methods or data transformations, such as
the Box–Cox transformation, may be necessary.

It is important to note that the K-S test is most sensitive around the median of the
distribution and less so in the tails. Therefore, when analyzing radon data—which may



Eng 2025, 6, 14 5 of 14

have extreme values due to localized geological factors—it is beneficial to use the K-S test
in conjunction with the Anderson–Darling test, which is more sensitive to deviations in
the tails.

2.2.4. Shapiro–Wilk Test

The Shapiro–Wilk test is a robust statistical method for evaluating the normality
of a dataset and is particularly effective with small sample sizes (typically less than
50 observations). This makes it highly relevant in radon studies, where limited data points
are common due to sampling constraints. The test statistic W is calculated as

W =

(
∑n

i=1 aix(i)
)2

∑n
i=1(xi − x̄)2 (5)

The null hypothesis is rejected if the Shapiro–Wilk test statistic (W) falls below the
critical value corresponding to a 5% significance level. This test evaluates whether a sample
originates from a normally distributed population and is particularly effective for small
sample sizes, typically defined as fewer than 50 observations. The critical value of W,
used to determine the rejection of the null hypothesis that the data follow a log-normal
distribution at the 5% significance level, is contingent upon both the specific distribution
and the sample size.

2.2.5. Estimating Homes Exceeding a Specific Radon Concentration Threshold

After confirming that the radon concentration data follow a log-normal distribution,
one can estimate the percentage of homes exceeding a specific radon concentration thresh-
old, denoted as NR. This estimation utilizes the geometric mean (GM) and the geometric
standard deviation (GSD) derived from the dataset.

The standardized variable Z is calculated using the following equation:

Z =
ln(NR)− ln(GM)

ln(GSD)
(6)

Recognizing that ln(GM) = µ and ln(GSD) = σ, where µ and σ are the mean and the
standard deviation of the log-transformed data, the equation simplifies to

Z =
ln(NR)− µ

σ
(7)

This Z value represents the number of standard deviations that the logarithm of the
threshold NR is away from the mean µ. To determine the probability P that a home exceeds
the threshold NR, the cumulative distribution function (CDF) of the standard normal
distribution is used:

P(Z ≥ X) = 1 − P(Z ≤ X) = 1 − Φ(X) (8)

where Φ(X) denotes the CDF of the standard normal distribution N(0, 1). By transform-
ing the log-normal distribution into a standard normal distribution, the computation of
probabilities is simplified. This allows for the use of standard statistical tables or software
to assess the risk and estimate the proportion of homes exceeding the specified radon
concentration threshold.

2.3. Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) is used to determine whether significant differences
exist in mean radon concentrations across various groups. Before applying ANOVA, it
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is essential to verify that the data meet the assumptions of normality and homogeneity
of variances, which are critical for the validity of the test results. These assumptions are
assessed through preliminary statistical tests on the indoor radon concentration data.

If these assumptions are satisfied, a one-way ANOVA is conducted, followed by
post hoc multiple comparisons using the Least Significant Difference (LSD) method to
identify specific group differences. The F-statistic in ANOVA is calculated using the
following formula:

F =
MSA
MSE

=

SSA
d fA
SSE
d fE

=

k
∑

i=1
ni(x̄i − x̄)2

k − 1
k
∑

i=1

ni
∑

j=1
(xij − x̄i)

2

n − k

(9)

In this equation, k represents the number of groups, ni is the number of observations
in the i-th group, x̄i is the mean radon concentration of the i-th group, x̄ is the overall mean
radon concentration, xij is the j-th observation in the i-th group, and n is the total number
of observations across all groups. SSA (Sum of Squares Among groups) measures the
variability between group means, while SSE (Sum of Squares Within groups) measures the
variability within each group. The degrees of freedom associated with SSA and SSE are
d fA = k − 1 and d fE = n − k, respectively. The mean square among groups is calculated as
MSA = SSA/d fA, and the mean square within groups is MSE = SSE/d fE.

In situations where the assumption of homogeneity of variances is violated—which
can occur due to the natural variability in radon measurements—the non-parametric
Kruskal–Wallis test serves as a suitable alternative. This test does not assume normality
and is effective for comparing median values across groups. The Kruskal–Wallis H-statistic
is computed as

H =
12

n(n + 1)

k

∑
i=1

R2
i

ni
− 3(n + 1) (10)

where Ri is the sum of the ranks assigned to the observations within the i-th group, and n
is the total number of observations.

By applying these statistical techniques, it is possible to rigorously evaluate differences
in radon concentrations among various categories such as geographic regions, building
types, or building materials.

2.4. Inverse Distance Weighting (IDW) and Kriging

Inverse Distance Weighting (IDW) and Kriging are widely used geospatial techniques
for generating detailed radon distribution maps from point data, aiding in the visualization
of environmental risk. The choice between IDW and Ordinary Kriging (OK) significantly
influences the accuracy and effectiveness of these maps. IDW is often favored for its simplic-
ity, relying on the proximity of measured points to estimate radon concentrations, making
it effective when data are sparse or unevenly distributed. However, this straightforward
approach can be less precise compared to Kriging. Ordinary Kriging offers a significant
advantage by considering both spatial correlation and variability between measurements,
resulting in statistically optimized and more accurate estimates, particularly suitable for
complex datasets.

Additionally, ArcGISPro 2022 software is commonly employed for generating these
maps, using a grid typically sized at 1 km × 1 km. Each of these interpolation methods
brings different strengths to radon mapping.
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3. Results and Discussion
In Period 1, comprehensive normality tests conducted on the log-transformed radon

concentration data, based on 34 measurements, provided clear evidence supporting the
hypothesis that the data follow a normal distribution. The detailed statistical results are
presented in Table 1.

Table 1. Results of normality tests in Period 1.

Test Statistic p-Value Interpretation

Shapiro–Wilk 0.9646 0.3307 Does not reject normality
Anderson–Darling 0.3201 0.718 (5% CV) Does not reject normality
Kolmogorov–Smirnov 0.0878 0.7283 Does not reject normality

Given that all tests produced p-values significantly above the common alpha level of
0.05, there is strong statistical evidence that the log-transformed data from Period 1 adheres
closely to a normal distribution. Figure 1 shows histograms and Q-Q plots for the data
of Period 1.

Figure 1. Graph histograms, the normal distribution fit to the log-transformed data, and the
Q-Q plots for measurement in Period 1. Top left: Histogram of original data with log-normal
fit. Top right: Q-Q plot of original data. Bottom left: Histogram of log-transformed data with normal
fit. Bottom right: Q-Q plot of log-transformed data.

Similarly, the analysis of log-transformed data from Period 2 also supports normality,
as evidenced by the p-values reported in Table 2.

Table 2. Results of normality tests in Period 2.

Test Statistic p-Value Interpretation

Shapiro–Wilk 0.9790 0.6264 Does not reject normality
Anderson–Darling 0.4231 0.726 (5% CV) Does not reject normality
Kolmogorov–Smirnov 0.1061 0.2740 Does not reject normality

The Shapiro–Wilk test confirms the normality of the data, supporting the assumption of
a normal distribution. Similarly, the Anderson–Darling and Kolmogorov–Smirnov tests fail
to reject the null hypothesis of normality, providing consistent evidence for this assumption.
It is essential to consider that the sensitivity of normality tests varies with sample size,
as in Period 1 and Period 2 with 34 and 42 observations, respectively. In contrast, even
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minor deviations can lead to rejecting the null hypothesis in larger samples. In this sense,
further visual analyses were performed to support the statistical results. Figure 2 shows
the histogram of the data, the fit of a normal distribution to the log-transformed data, and
the Q-Q plots for Period 2. This result, observed in both periods, aligns with earlier studies
showing that radon concentrations tend to follow a log-normal distribution due to the
multiplicative nature of the processes influencing its accumulation [35,36].

Figure 2. Graph histograms, the normal distribution fit to the log-transformed data, and the
Q-Q plots for measurement in Period 2. Top left: Histogram of original data with log-normal
fit. Top right: Q-Q plot of original data. Bottom left: Histogram of log-transformed data with normal
fit. Bottom right: Q-Q plot of log-transformed data.

Table 3 summarizes the normality test results for Period 3. The Shapiro–Wilk and
Anderson–Darling tests reject normality, while the Kolmogorov–Smirnov does not. This
inconsistency reflects the varying sensitivities of normality tests to sample size and specific data
characteristics. In this sense, the normality assumption for Period 3 is not strongly supported.

Table 3. Results of normality tests in Period 3.

Test Statistic p-Value Interpretation

Shapiro–Wilk 0.9193 0.0019 Rejects normality
Anderson–Darling 1.3787 0.726 (5% CV) Rejects normality
Kolmogorov–Smirnov 0.1346 0.0227 Rejects normality

The Shapiro–Wilk test, known for its sensitivity in small samples [37], was supple-
mented with visual inspections through histograms and Q-Q plots, as recommended in
previous statistical analyses [38]. Figure 3 illustrates the graphical analysis for Period 3,
including the original data, log-transformed data, and Box–Cox-transformed data. In the
first row, the histogram of radon concentration and the Q-Q plot for the expected log-
normal distribution reveal a poor fit to log-normality. Similarly, the second row presents the
histogram and Q-Q plot for the log-transformed data, which also indicate an unsatisfactory
fit to normality.
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Figure 3. Graph of the fit to the normality curve for measurement in Period 3. Top left: Histogram of
original data with log-normal fit. Top right: Q-Q plot of original data. Middle left: Histogram
of log-transformed data with normal fit. Middle right: Q-Q plot of log-transformed data.
Bottom left: Histogram of Box–Cox-transformed data with normal fit. Bottom right: Q-Q plot of
Box–Cox-transformed data.

Finally, the normality tests conducted on the log-transformed radon concentration
data across the three measurement periods indicated that the data do not follow a normal
distribution, as shown in Table 4. A Box–Cox transformation with a lambda value of
0.5694 was applied to normalize the combined dataset from the three periods, resulting
in 86 measurement points. Specifically, the first period contributed 34 data points, the
second added 42, and the third included repeated measurements for most households
while incorporating new measurement locations. In cases where multiple measurements
were taken at the same location, the values were averaged to produce the final dataset used
for the generation of the radon map. Post-transformation normality tests confirmed that
the data followed a normal distribution, making them more suitable for the geostatistical
methods required to generate the maps described below [39].

Table 4. Comparison of normality test results before and after Box–Cox transformation.

Test Statistic p-Value Interpretation

Shapiro–Wilk 0.9706 0.0497 Rejects normality
Anderson–Darling 0.7649 0.726 (5% CV) Rejects normality
Kolmogorov–Smirnov 0.1000 0.0486 Rejects normality

Shapiro–Wilk (Box–Cox) 0.9764 0.1212 Does not reject normality
Anderson–Darling (Box–Cox) 0.6983 0.726(5% CV) Does not reject normality
Kolmogorov–Smirnov (Box–Cox) 0.0888 0.1325 Does not reject normality

A visual analysis of the data is shown in Figure 4.
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Figure 4. Graph of the fit to the normality curve for measurement in all periods. Top left: Histogram
of original data with log-normal fit. Top right: Q-Q plot of original data. Middle left: Histogram
of log-transformed data with normal fit. Middle right: Q-Q plot of log-transformed data.
Bottom left: Histogram of Box–Cox-transformed data with normal fit. Bottom right: Q-Q plot
of Box–Cox-transformed data.

An analysis of variance (ANOVA) was performed to determine whether there are
statistically significant differences in radon concentrations between Period 1, Period 2, and
Period 3. The results (F-statistic = 3.182, p-value = 0.0449) indicate statistically significant
differences at the 0.05 significance level. These differences could be attributed to seasonal
variations and changes in environmental conditions, such as temperature and humidity,
which affect the emanation and accumulation of radon [40,41]. Additionally, ventilation
habits and occupancy of the residents can influence indoor radon levels [42].

The boxplot in Figure 5 illustrates the comparison of indoor radon concentrations
across the three periods. Regarding GM and GSD, Period 1 exhibited a GM of 146.4 Bq·m−3

with a GSD of 1.3. Period 2 recorded a GM of 162.3 Bq·m−3 and a GSD of 1.18, while Period
3 showed a GM of 150.8 Bq·m−3 with a GSD of 1.14. Finally, GM and GSD of the combined
data for all measurement periods are 153.2 and 1.2, respectively.

The probability of exceeding the radon concentration threshold of 200 Bq·m−3 was
calculated using Equations (7) and (9). The significance of differences between the three
measurement periods was assessed based on the log-normal distribution of radon concen-
trations. The confirmed normality of the log-transformed data validated this calculation.
The likelihood of exceeding this threshold was estimated at 11.7% for Period 1, 1.43% for
Period 2, and 8.7% for Period 3. When the data from all three measurement periods were
combined to generate the map, the overall probability of homes exceeding 200 Bq·m−3 was
estimated at 9.5%.

Figure 6 presents two maps of radon concentration in the San Martín de Porres district,
incorporating data from the three periods. The map on the left was generated using the
Inverse Distance Weighted (IDW) interpolation method, while the map on the right was
created using Kriging. The IDW interpolation method has a limitation in identifying regions
where radon concentrations may exceed 200 Bq·m−3, as a single data point may not be
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representative of the surrounding area, especially if the measurement point reflects an
atypical condition. This is because this method only weights values based on distance,
without considering spatial relationships between points or the natural variability of the
phenomenon. As a result, areas of high concentration are generated abruptly and locally,
as observed in the map, where two red points stand out due to the influence of a single
measurement point. This lack of spatial continuity in the estimates makes it difficult
to achieve a realistic representation and may lead to inaccurate interpretations of high-
risk areas.

Figure 5. Box–whisker plots showing the variation in radon concentration in the three periods. The
plots illustrate the range, median, and variability of radon concentrations across Period 1, Period 2,
and Period 3, providing insights into the distribution and potential outliers within each period.

Figure 6. Predicted indoor radon map of San Martín de Porres dwellings over a grid with the
dimensions of 1 km × 1 km using the (A) Inverse Distance Weighting (IDW) and (B) Ordinary
Kriging interpolation methods.

In contrast, the map generated using Kriging addresses these limitations by smoothing
transitions between zones and incorporating both spatial relationships and the natural
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variability of radon. The red point, which indicates a high radon concentration, is located
in an area where transitions to lower values in surrounding areas are smoother. This
suggests that, although it represents an extreme value, Kriging incorporates it as part
of a broader spatial trend by evaluating its influence based on the statistical correlation
with adjacent points. Unlike IDW, which generates abrupt and highly localized “islands”
around high values, Kriging integrates this red point more progressively into the overall
pattern, achieving more realistic estimates that are less dependent on individual data points.
Therefore, in the analyzed case, the map generated by Kriging provides improved reliability
in identifying high-risk regions.

4. Conclusions
This study comprehensively analyzes the spatial and temporal distribution of indoor

radon concentrations in San Martín de Porres, Lima. The significant variations observed
across the three measurement periods underscore the complex interplay of environmental,
structural, and human factors that influence radon accumulation in residential settings.
Moreover, the application of the Box–Cox transformation significantly improved the nor-
mality of the data, thereby enhancing the precision of subsequent geostatistical analyses.
This finding emphasizes the importance of transforming and validating data before ap-
plying advanced analytical techniques. The study revealed notable differences in radon
concentrations across the three measurement periods, further highlighting the critical role
of continuous monitoring in accurately assessing long-term exposure risks. Additionally,
the results demonstrate that radon concentrations exhibit both temporal fluctuations and
spatial heterogeneity, which carry important implications for risk assessment and public
health strategies. The detection of statistically significant differences among the periods
suggests that factors such as seasonal changes, environmental conditions, and occupant
behaviors substantially impact indoor radon levels. It is essential to highlight that the
radon concentrations measured during the three periods represent an estimate of the an-
nual average behavior, considering the temporal limitation of the measurements. Future
studies will aim to expand the temporal coverage, allowing for representative weighted
values of yearly radon concentrations in the evaluated areas. This effort will enable a
more comprehensive assessment of the associated risks and the validation of the applied
methods. In summary, this study demonstrates the value of advanced statistical methods in
improving data accuracy and reinforces the necessity of continuous monitoring to manage
radon exposure effectively.
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