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Abstract. In this work atorquecontroller foravariable rotational speedind turbine has been
modelled using Reinforcement Learningnd consideringthe Optimal Torque- Maximum
Power Point Trackingroblemas one of optimization. The reward optimization function is
designed as nontlinear function deperidg mainly on the rotor power variation Based on
this, an optimal actiofelectranagnéic torque variation) regulates the turbine rotational speed.
A simulatedl.5 MW threebladed wind turbineoperationis managed by the torque controller.

It keeps the turbine working at optimal operational conditions aftetuccessfulraining
proces, which is carried out using the Proximal Policy Optimization algorithiror the
controller training the turbineconfrons constant and then randomly staggered wind speed
behaviour. Time series of rot@ngular speediorque and power are present€lr results
show that thenodelledcontrolleris able to reach and maintain the wind tugbwperatioratits
optimal power generation conditien This methodology avoids g some empirical
parameter characteristic tie Optimal Torque- Maximum Power Bint Trackingalgorithm
widely used in wind turbine control systems.

1. Introduction

Thewind turbine is a promising technology for clean energy generationldwide, deploymentsf
wind turbine farms, onshore and offshorare expected to continue to groim the coming years
Neverthelessa profitable operation of wind turbines depends onatbathercondition characterized
by their stochastidehaviour Therefore, it is necessary nwodelcontrol systems aimed at making the
wind turbines work at optimal operating conditionsThe Optimal Torque- Maximum Power Point
Tracking OT-MPPT)techniquds one of the most widely usedntrol system method#t is based on
finding, by “tracking”, an optinal turbine rotational speed that createsdtaefor the generation an
optimal rotor torquefor a reference wind speeithus allowing the turbine to operadeits condition of
maximum power generatigd]. Howeer, theOT-MPPT depends oran empirical parametefound
after several laboratomgstsand after thgpostprocessing of large amounts of data.

On the other hand, technologies such as machine legiMingoffer alternatives to overcome this
challengeas shown in the last efforts done[l2y, [3] and[4]. Reinforcement Learning (RL) isxavL
method based on an entifyat learrs a skill by experiencelike a child learning to walk. Due to the
nature of the problem (tH@T-MPPT problem irwind turbines), this ML methodoffers asolutionto
this challenge In this sense using RL,a modelled controller (agent) iteracts with the turbine
(environment by imposing a torque (action) in such a way that the controller receives a signal
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(reward)indicating an increasar decrease the generated powerhis reward can be modelled as an
optimization functionso the controller can onlyreceive favourable signandrespom by sendng
only optimal torquesriented tahewind turbineto work at itsoptimal operating point.

In this work, a torque controller afvariablerotationalspeedwind turbine has beemodelled The
modellingis based orRL, consideringthe OT-MPPT problem as one of optimizatioallowing the
wind turbineto work at optimaloperation conditions

2. Analytical model for wind turbines
This section describes the mathematical model ofltBeMW threebladed wind turbineutilised for
the trainingof the controllef1], [5]. The rotor power of avind turbine can be calculatdxy:

1
P, = EanZ Covy (1)

wherep is the air densityl(25kg/n?), R is the rotor blade radiug§.5 m), C, is the power coefficient,
andwy is the wind speed (m/sfror the calculation of the power coefficient, the following correlation
was used6]:

C,(4,B) = 0.22 (1m£ —0.48 — 5) e~125/m )

wherel is the ratio of the speed at thiadetip to the wind speedequation(3). The parametef is the

pitch angle of the blade profil@® deg, andm is given byequation(4).

a =k 3)
UW

in this expressionherotor angular speeftad/s)is represented biy..

1 1 0.035 4)
m  A+0.088 B3+1
The changedn the rotor angular speed can be calculated based on the relationship between the
torque inertia anddamping ofthe mechanicalnd electricabomponents:

Jowr =Ty — Kewy — Ty ()

in this expressign7: and Ty are the rotor and electromagnetic torque (Nmespectively.The
parameterd; andK; represent the total contribution of the mechanical and electrical components to the
inertia and damping, respectively. Tiatal inertiacan be calculateoly:

Je=Jr +n§]g (6)

whereJ; represents the inertia due to tikebinerotor and blade$§4456761 kg-m?), and.Jy represents
the inertia due tahe electric generatoshaft androtor (123 kg-m?). The dampingeffects were
neglected for this workThe angular speed ratio in the gearbox is representeg (105.494). In this
paper, the electromagnetic torquer@presented byly and not byngTy in order to simplify the
mathematical expressiofar easy reading.

Finally, the relation between thetor torque and power is represented by:

B = Tyw, (7)

3. Reinforcement Learning modelling

In Reinforcement karning, an“agent learns totake “action$ to a yet unknown “environment
according to a definedoal A numerical“reward sent to the*agent quantifieshow good the
imposed “action” was in contributingto reachng the goal By experiencethe“agent learns which
actions bring thenost significantong-term“reward’ even at the expense of shtetm*“reward’ [7].
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Figure 1, internal loop,presents the interaction of the RL charactemssideredor this work. At
time ¢, the “agent” (controller)receives the “state” s, of the “environment” (wind turbine)and uss it to
formulatean “action” a, based on a “policy” or criterion m. Thus, n(ads,) is the probability that the
action ¢, is formulatedaccording tothe states,. Thenthe formulated “action” is imposed on the
“environmernit, and itreturns to théagent a new"staté€ s,.; and “reward’ r.,.
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Figure 1. The "agent" - "environment" interaction and the PPO training modelled for this
work.

In this work, a series offinite episodes were considerdor each iteration(k). Each episode
conclude when a time limit 4imit) is reached. An episode may end befake if the wind turbine
reachesan unrealistic statevhich mustbe avoided, foinstance negative valuesf w; (a sudden stop
and change of direction of thetor angularspeedl. In that case the agent learns to consider the
actions that ledhe controllerto that terminal state as "undesirable actions" since these actions do not
allow the agento obtain more rewastiuring the episodd.he state ifomposeaf:

s= [vw, Wy, Wy, Tr., Tg] (8)
Thechoseractionis thevariationof the electromagnetic torque
Tg,t = Tg,t—l + at (9)

thus the electromagnetic torque is able to regulate the change of the rotor angular speed according to
equation(5). This action is considered to work on a continuous sp@lckounded by the designing
characteristicef the turbineassumed equal t©6500 kNm/s

The agent uses a stochastic policy to decide the value to take from the action space. This policy
was parameterized using a tf&yer neural network (NN) and a normal distributed probability density
function [7]. The NN receives the state vector as input and estimates the mean of the probability
function. The standard deviation of the probability function is a "traingldedmeter that is updated
during the training process. It is considered the agent's exploration parameter for the action space. In
case this parameter decreases, it makes the agent's actions progressively less random.

We designed reward function (optimiation function)as a noflinear function deperidg on two
variables

n= kp (Pr,t - Pr,t—l) — ky (Tg,t - Tg,t—l)2 + ka (10)

The first addend on the right side of this equatiors tise PotentiaBased Reward Shaping (PBRS)
method[9] to speed up and guide the training procésadds a positive reward to an increase in rotor
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power. The second adshdpenalizegoo high actionsignals, thukeepinga safeand stable controller.
The last addend is a small constant reward that encourages the agent to stay alive, thus not “falling”
into situations that end the episode bet@re This situation camesult fromnegative rewards thaan
lead he agent to believihat terminatng the episode is the best alternative taximize the reward.
The coefficients;, (0.001) 4y (0.1) andka (0.05)are he tuning hyperparametecalculated by trial and
error.

The Proximé Policy Optimization (PPO) algorithm was uded the trainingof the agentlt was
selecteddue to its good performance in continuous acsipace forcomplex environmentgl0]. The
advantage functiomeeded for the PPO calculation was estimatgidg the Generalied Advantage
Estimation (GAE)11]. Figure 1, external loopshows thé®POtraining process for this work. It starts
with the agenenvironmeninteractionfor a horizonset equal t@192time steps to collecthe current
state, action, and reward. The collected data and the current policy are then thgamliiar process
(external loop}o update the policfor eachk iteration

4. Simulations and results

In order toevaluatethe performance of theodelledcontroller,two simulationswere carried out. The
first considersa constantwind speed(Figure 2), and the secondassume a randomly staggered
behaviourfor the wind speedFigure3). As initial conditions, itwasassumed that the turbine starts
working with a7y and aw, equal to 105.494 kNm and 1 radisspectively.
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Figure 2. Response of the torque-controlled wind turbine for the iteration 50 (left) and 100
(right) - constant wind speed case.
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4.1. Constant wind speed

As a proof of conceptheagent was trained ithhe environment with a constant wind spesguial to 11
m/s during 90 s Figure?2 (left) shows theesponse othe turbinefor the iteration 50. Similar results
were obtainedfor the iteration 0 The dotted red linesepresent the ideal behaviour that the turbine
should haveEventhoughthe turbine starts to increase its rotational sgibednd powei(c) during the
first instants of timethe agent has a salkestructivebehaviourthat quickly takes théurbineto stop
(undesirablestatg.

However, for the iteration 100, the controller was able to manage the turbine to work at its optimal
operation conditionFigure 2 (right). This figure shows that after a short transient period and for a
time close to 20,ghe turbine reaches its optimal equal to 1.8 rad/g&) and a maximun®; equal to
1685 kW (f) for an optimal7; equal to 36 kNm (d). A similar situationwas presented in later
iterations.
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Figure 3. Response of the torque-controlled wind turbine for the iteration 100 (left) and
800 (right) - randomly staggered wind speed case.
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4.2. Randomly staggered wind speed

In this case, the controller was trained for the wind turbine facing a randomly staggered wind speed.
The v,y magnitude was set to vary between 8 m/s and 12 m/s each 50 s. Simildesseittive
behaviour of the controller was presented in this case for the iter&iand 50. However, for the
iteration 100, the controller starts to manage the wind turbirpones.Figure 3 (left) shows the
imposed randomly staggered wind speed over {ageThe controller acts by imposing a dynarfic

trying to reach theptimal torque for the current wind spe@)l. The turbine responds by changimng

(c) and Ty, the last one with values close to thgb). Despite this, the turbine is not yet able to reach

its maximum powefd). It is due to the sudden change of thedwpeed magnitude, the inertia of the
mechanical and electrical components, and because the controlleriisteglllearning process.

Now, for the iteration 800Figure 3 (right), the controllerentirely is able to manage the turbine
operation. Themodelledcontroller learned to keep the wind turbine working at optimal operation
conditions. At each value ofy (€), the controller calculates an optim@irque (f), with a short
transient at the beginning of tlvg change. The turbine responlg generating an optima#: (g) and
T: (f), buttheshort transienis still present For this iteration, the optimal and7; combinatiorkeefs
the turbine workig at its maximum rotor power generatidn).

5. Conclusion

In this work, a torque controller for a variable rotational speed wind turbinemedslledbased on

RL, PBRS for the reward function, and PPO for the training process. The reward function was
designed as an optimization function, considering a linear contribution of positive reward for rotor
power rising, a negative quadratic penalization farupt action change, and a constant live bonus
reward. This designed reward function that contemplates théMBRT goal as an optimization
problem rather than a reference tracking procedure allowed the torque controller to find the best
strategy on its owrBYy this strategy, oumodelledtorque controller was able to keep the wind turbine
operating under the combination of optimal rotor angular speed and optimal rotor torque for maximum
rotor power generation.

An obvious continuation of this work will be deg the torquecontrolled wind turbine under an
actual wind speed from field measurements or computational simulations. Once trained, the
deployment of the torque controller into a complete wind turbine simulator and then the manufacture
of the torque camoller for laboratory tests will be the future tasks if the previous stages are successful.
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