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Abstract. In this work, a torque controller for a variable rotational speed wind turbine has been 
modelled using Reinforcement Learning and considering the Optimal Torque - Maximum 
Power Point Tracking problem as one of optimization. The reward optimization function is 
designed as a non-linear function depending mainly on the rotor power variation. Based on 
this, an optimal action (electromagnetic torque variation) regulates the turbine rotational speed. 
A simulated 1.5 MW three bladed wind turbine operation is managed by the torque controller. 
It keeps the turbine working at optimal operational conditions after a successful training 
process, which is carried out using the Proximal Policy Optimization algorithm. For the 
controller training, the turbine confronts constant and then randomly staggered wind speed 
behaviour. Time series of rotor angular speed, torque and power are presented. Our results 
show that the modelled controller is able to reach and maintain the wind turbine operation at its 
optimal power generation conditions. This methodology avoids using some empirical 
parameter characteristic of the Optimal Torque - Maximum Power Point Tracking algorithm 
widely used in wind turbine control systems. 

1.  Introduction 

The wind turbine is a promising technology for clean energy generation. Worldwide, deployments of 
wind turbine farms, onshore and offshore, are expected to continue to grow in the coming years. 
Nevertheless, a profitable operation of wind turbines depends on the weather condition, characterized 
by their stochastic behaviour. Therefore, it is necessary to model control systems aimed at making the 
wind turbines work at optimal operating conditions. The Optimal Torque - Maximum Power Point 
Tracking (OT-MPPT) technique is one of the most widely used control system methods. It is based on 
finding, by “tracking”, an optimal turbine rotational speed that creates the state for the generation of an 
optimal rotor torque for a reference wind speed, thus allowing the turbine to operate at its condition of 
maximum power generation [1]. However, the OT-MPPT depends on an empirical parameter found 
after several laboratory tests and after the post-processing of large amounts of data. 

On the other hand, technologies such as machine learning (ML) offer alternatives to overcome this 
challenge, as shown in the last efforts done by [2], [3] and [4]. Reinforcement Learning (RL) is an ML 
method based on an entity that learns a skill by experience, like a child learning to walk. Due to the 
nature of the problem (the OT-MPPT problem in wind turbines), this ML method offers a solution to 
this challenge. In this sense, using RL, a modelled controller (agent) interacts with the turbine 
(environment) by imposing a torque (action) in such a way that the controller receives a signal 
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(reward) indicating an increase or decrease in the generated power. This reward can be modelled as an 
optimization function, so the controller can only receive favourable signals and respond by sending 
only optimal torques oriented to the wind turbine to work at its optimal operating point. 

In this work, a torque controller of a variable rotational speed wind turbine has been modelled. The 
modelling is based on RL, considering the OT-MPPT problem as one of optimization, allowing the 
wind turbine to work at optimal operation conditions. 

2.  Analytical model for wind turbines 

This section describes the mathematical model of the 1.5 MW three bladed wind turbine utilised for 
the training of the controller [1], [5]. The rotor power of a wind turbine can be calculated by: 

𝑃r =
1

2
𝜌𝜋𝑅2𝐶p𝑣w

3  (1) 

where ρ is the air density (1.25 kg/m3), R is the rotor blade radius (38.5 m), Cp is the power coefficient, 
and vw is the wind speed (m/s). For the calculation of the power coefficient, the following correlation 
was used [6]: 

𝐶p(𝜆, 𝛽) = 0.22 (
116

𝑚
− 0.4𝛽 − 5) e−12.5 𝑚⁄  (2) 

where λ is the ratio of the speed at the blade tip to the wind speed, equation (3). The parameter β is the 
pitch angle of the blade profile (0 deg), and m is given by equation (4). 

𝜆 =
𝑤r𝑅

𝑣w
 (3) 

in this expression, the rotor angular speed (rad/s) is represented by wr. 

1

𝑚
=

1

𝜆 + 0.08𝛽
−

0.035

𝛽3 + 1
 (4) 

The changes in the rotor angular speed can be calculated based on the relationship between the 
torque, inertia and damping of the mechanical and electrical components: 

𝐽t𝑤̇r = 𝑇r −𝐾t𝑤r − 𝑇g (5) 

in this expression, Tr and Tg are the rotor and electromagnetic torque (Nm), respectively. The 
parameters Jt and Kt represent the total contribution of the mechanical and electrical components to the 
inertia and damping, respectively. The total inertia can be calculated by: 

𝐽t = 𝐽r + 𝑛g
2𝐽g (6) 

where Jr represents the inertia due to the turbine rotor and blades (4456761 kg-m2), and Jg represents 
the inertia due to the electric generator shaft and rotor (123 kg-m2). The damping effects were 
neglected for this work. The angular speed ratio in the gearbox is represented by ng (105.494). In this 
paper, the electromagnetic torque is represented by Tg and not by ngTg in order to simplify the 
mathematical expressions for easy reading. 

Finally, the relation between the rotor torque and power is represented by: 

𝑃r = 𝑇r𝑤r (7) 

3.  Reinforcement Learning modelling 

In Reinforcement Learning, an “agent” learns to take “actions” to a yet unknown “environment” 
according to a defined goal. A numerical “reward” sent to the “agent” quantifies how good the 
imposed “action” was in contributing to reaching the goal. By experience, the “agent” learns which 
actions bring the most significant long-term “reward” even at the expense of short-term “reward” [7]. 
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Figure 1, internal loop, presents the interaction of the RL characters considered for this work. At 
time t, the “agent” (controller) receives the “state” st of the “environment” (wind turbine) and uses it to 
formulate an “action” at based on a “policy” or criterion π. Thus, π(at/st) is the probability that the 
action at is formulated according to the state st. Then the formulated “action” is imposed on the 
“environment”, and it returns to the “agent” a new “state” st+1 and “reward” rt+1. 

 

 

Figure 1. The "agent" - "environment" interaction and the PPO training modelled for this 

work. 

 
In this work, a series of finite episodes were considered for each iteration (k). Each episode 

concludes when a time limit (tlimit) is reached. An episode may end before tlimit if the wind turbine 
reaches an unrealistic state, which must be avoided, for instance, negative values of wr (a sudden stop 
and change of direction of the rotor angular speed). In that case, the agent learns to consider the 
actions that led the controller to that terminal state as "undesirable actions" since these actions do not 
allow the agent to obtain more rewards during the episode. The state is composed of: 

𝒔 = [𝑣w, 𝑤r, 𝑤̇r, 𝑇r, 𝑇g] (8) 

The chosen action is the variation of the electromagnetic torque at: 

𝑇g,t = 𝑇g,t−1 + 𝑎𝑡 (9) 

thus, the electromagnetic torque is able to regulate the change of the rotor angular speed according to 
equation (5). This action is considered to work on a continuous space [8] bounded by the designing 
characteristics of the turbine, assumed equal to ± 500 kNm/s. 

The agent uses a stochastic policy to decide the value to take from the action space. This policy 
was parameterized using a two-layer neural network (NN) and a normal distributed probability density 
function [7]. The NN receives the state vector as input and estimates the mean of the probability 
function. The standard deviation of the probability function is a "trainable" parameter that is updated 
during the training process. It is considered the agent's exploration parameter for the action space. In 
case this parameter decreases, it makes the agent's actions progressively less random. 

We designed a reward function (optimization function) as a non-linear function depending on two 
variables: 

𝑟t = 𝑘p(𝑃r,t − 𝑃r,t−1) − 𝑘𝑢(𝑇g,t − 𝑇g,t−1)
2
+ 𝑘a (10) 

The first addend on the right side of this equation uses the Potential-Based Reward Shaping (PBRS) 
method [9] to speed up and guide the training process. It adds a positive reward to an increase in rotor 
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power. The second addend penalizes too high action signals, thus keeping a safe and stable controller. 
The last addend is a small constant reward that encourages the agent to stay alive, thus not “falling” 
into situations that end the episode before tlimit. This situation can result from negative rewards that can 
lead the agent to believe that terminating the episode is the best alternative to maximize the reward. 
The coefficients kp (0.001), ku (0.1) and ka (0.05) are the tuning hyperparameters calculated by trial and 
error. 

The Proximal Policy Optimization (PPO) algorithm was used for the training of the agent. It was 
selected due to its good performance in continuous action space for complex environments [10]. The 
advantage function needed for the PPO calculation was estimated using the Generalized Advantage 
Estimation (GAE) [11]. Figure 1, external loop, shows the PPO training process for this work. It starts 
with the agent-environment interaction for a horizon set equal to 8192 time steps to collect the current 
state, action, and reward. The collected data and the current policy are then used in the outer process 
(external loop) to update the policy for each k iteration. 

4.  Simulations and results 
In order to evaluate the performance of the modelled controller, two simulations were carried out. The 
first considers a constant wind speed (Figure 2), and the second assumes a randomly staggered 
behaviour for the wind speed (Figure 3). As initial conditions, it was assumed that the turbine starts 
working with a Tg and a wr equal to 105.494 kNm and 1 rad/s, respectively. 

 
Figure 2. Response of the torque-controlled wind turbine for the iteration 50 (left) and 100 
(right) - constant wind speed case. 
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4.1.  Constant wind speed 

As a proof of concept, the agent was trained in the environment with a constant wind speed equal to 11 
m/s during 90 s. Figure 2 (left) shows the response of the turbine for the iteration 50. Similar results 
were obtained for the iteration 0. The dotted red lines represent the ideal behaviour that the turbine 
should have. Even though the turbine starts to increase its rotational speed (b) and power (c) during the 
first instants of time, the agent has a self-destructive behaviour that quickly takes the turbine to stop 
(undesirable state). 

However, for the iteration 100, the controller was able to manage the turbine to work at its optimal 
operation condition, Figure 2 (right). This figure shows that after a short transient period and for a 
time close to 20 s, the turbine reaches its optimal wr equal to 1.8 rad/s (e) and a maximum Pr equal to 
1685 kW (f) for an optimal Tr equal to 936 kNm (d). A similar situation was presented in later 
iterations. 

 
Figure 3. Response of the torque-controlled wind turbine for the iteration 100 (left) and 

800 (right) - randomly staggered wind speed case. 
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4.2.  Randomly staggered wind speed 

In this case, the controller was trained for the wind turbine facing a randomly staggered wind speed. 
The vw magnitude was set to vary between 8 m/s and 12 m/s each 50 s. Similar self-destructive 
behaviour of the controller was presented in this case for the iterations 0 and 50. However, for the 
iteration 100, the controller starts to manage the wind turbine response. Figure 3 (left) shows the 
imposed randomly staggered wind speed over time (a). The controller acts by imposing a dynamic Tg 
trying to reach the optimal torque for the current wind speed (b). The turbine responds by changing wr 
(c) and Tr, the last one with values close to the Tg (b). Despite this, the turbine is not yet able to reach 
its maximum power (d). It is due to the sudden change of the wind speed magnitude, the inertia of the 
mechanical and electrical components, and because the controller is still in the learning process. 

Now, for the iteration 800, Figure 3 (right), the controller entirely is able to manage the turbine 
operation. The modelled controller learned to keep the wind turbine working at optimal operation 
conditions. At each value of vw (e), the controller calculates an optimal torque (f), with a short 
transient at the beginning of the vw change. The turbine responds by generating an optimal wr (g) and 
Tr (f), but the short transient is still present. For this iteration, the optimal wr and Tr combination keeps 
the turbine working at its maximum rotor power generation (h). 

5.  Conclusion 
In this work, a torque controller for a variable rotational speed wind turbine was modelled based on 
RL, PBRS for the reward function, and PPO for the training process. The reward function was 
designed as an optimization function, considering a linear contribution of positive reward for rotor 
power rising, a negative quadratic penalization for abrupt action change, and a constant live bonus 
reward. This designed reward function that contemplates the OT-MPPT goal as an optimization 
problem rather than a reference tracking procedure allowed the torque controller to find the best 
strategy on its own. By this strategy, our modelled torque controller was able to keep the wind turbine 
operating under the combination of optimal rotor angular speed and optimal rotor torque for maximum 
rotor power generation. 

An obvious continuation of this work will be facing the torque-controlled wind turbine under an 
actual wind speed from field measurements or computational simulations. Once trained, the 
deployment of the torque controller into a complete wind turbine simulator and then the manufacture 
of the torque controller for laboratory tests will be the future tasks if the previous stages are successful. 
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