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Abstract: Commonly, it is accepted that oncology treatment would yield outcomes with a certain
determinism without any quantitative support or mathematical model that establishes such deter-
minations. Nowadays, with the advent of nanomedicine, the targeting drug delivery scheme has
emerged, whose central objective is the uptake of nanoparticles by tumors. Once they are injected
into the bloodstream, it is unclear as to which process governs the directing of nanoparticles towards
the desired target, deterministic or stochastic. In any scenario, an optimal outcome, small toxicity and
minimal dispersion of drugs is expected. Commonly, it is expected that an important fraction of them
can be internalized into tumor. In this manner, due to the fraction of nanoparticles that have failed
to uptake, the success of the drug delivery scheme might be at risk. In this paper, a theory based
on the sequence electrodynamics–diffusion–Bayes theorem is presented. The Bayesian probability
that emerges at the end of the sequence might be telling us that dynamical processes based on the
injection of electrically charged nanoparticles might be dictated by stochastic formalism. Thus, rather
than expecting a deterministic process, the chain of events would convert the drug delivery scheme
to be dependent on a sequence of conditional probabilities.

Keywords: drug delivery; electrodynamics; Bayes; nonlinear systems
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1. Introduction

As studied in [1], there are solid arguments to expect a vertiginous progress of
nanomedicine, which is seen as the conjunction of medicine and nanotechnology. With
the fabrication of nanoparticles (objects whose sizes range between 10 nm and 1000 nm),
novel techniques to attack diseases have emerged [2]. For example, in [3], this was in-
tensely studied based on the approach that nanoparticles can be guided through magneto-
electric nanocarriers.

For example, the technique known as Targeted Drug Delivery (TDD) emerged as an
accurate action against the progress of tumors in diseases related to cancer. Nevertheless,
one can perceive that there is still a wide debate in literature as to the pros and cons
about the injection of metal-based nanoparticles into the bloodstream [4]. Thus, while
nanoparticles transit over the bloodstream, their longevity is required in order to accomplish
the objectives of therapy. Nevertheless, the sustainability of nanoparticles is affected by
incorrect binding, which would decrease the effectiveness of anticancer strategies [5]. Due
to the complexity of biochemical and physical–chemical processes at the nano-level, it
is logical to expect a sustainable chain of events against the central objective of the TDD
scheme. For example, nanoparticles made of gold have shown undesirable side effects such
as the mechanism of blood coagulation [6]. As investigated in [7,8], the surface exposure
of nanoparticles leads to interactions with biomolecules as well as with themselves. From
this, one can see the undesired consequence in the usage of nanoparticles in the wrong
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reconfiguration of the biochemistry of proteins. A noteworthy example is seen in [9], where
physical effects from the injected nanoparticles might be exhibiting transformation into a
type known as a “corona”.

In [10], the electric effects of nanoparticles coated with gold aiming to unfold FibriGen
(FG) by producing inflammatory events were studied; it was observed that the surface of
coated nanoparticles might play a crucial role in the failure of TDD schemes.

An important point that should be stressed is the macroscopic reaction of blood against
electrically charged compounds while are under interaction with cells. A notable example
of this is seen when blood cells exhibit physicochemical behavior, which is known as
hemagglutination [11]. Indeed, antigen–antibody binding is strongly based on electric
forces, by which the subsequent states of blood are defined. Anomalous binding would be
a potential cause for the apparition of negative sequels after the injection of nanoparticles.
Clearly, this would represent a disadvantage of the opted TDD scheme.

Therefore, one can wonder about the role of electrodynamics to understand the mech-
anism of coated nanoparticles whose surface has a direct influence on cellular uptake. For
instance, in [12], the effect of the electric charge of nanoparticles in the action of internaliza-
tion was investigated. The electric effects are recognized as a sensitive point in the different
schemes of drug delivery.

The sign of electric charge is seen as a noteworthy aspect, such as systems containing
positively charged nanoparticles and offering interesting prospects to reach the target (tu-
mors or cells), as studied in [13,14]. This would favor the mechanisms related to the uptake
by molecular systems belonging to tumor tissue. Parallel effects such as the adsorption
of proteins generating layers over the surface of nanoparticles would produce colloidal
systems according to the so-called zeta-function [15]. According to literature, canonical
approaches based on the diffusion equation have been widely used in the study of kinetics
once nanoparticles have been injected. Also, scenarios have emerged investigating the
fact that internalization cannot be described by simple diffusion, as seen in [16], where the
usage of three-dimensional convection–diffusion is emphasized.

Due to the complex interactions of nanoparticles with blood, a single approach
might not be suitable; thus, a single theoretical formulation describing only diffusive
phenomenologies might be incomplete. Instead, an effective hybridization with other ap-
proaches is required. Therefore, the conjunction of classical electrodynamics and diffusive
models emerges to be necessary in order to propose a robust model that describes the flux
of nanoparticles as compounds with an electrically charged surface. It should be noted
that this conjunction might not be limited to determinism; so, probabilistic events might
be a fair extension of hybrid approaches [17]. In this manner, the end-to-end process from
injection to internalization can be seen as a chain of events.

This is the opted path of this paper: the construction of a hybrid model that combines
diffusion with electrodynamics and might also be correlated to stochastic events in a
coherent manner.

In other words, the uptake as well as internalization of electrically charged nanoparti-
cles would be dictated by probabilistic rules. The apparition of stochastic events might be
in concordance with the confluence of a plethora of variables that converts the TDD scheme
in a nonlinear system from a linear to a fully nonlinear phase. An image of the central idea
of the paper is displayed in Figure 1. The rest of paper is as follows: In the second section,
a macroscopic electrodynamic model of nanoparticles is presented; here, the Coulomb-like
interactions are emphasized. In the third section, the diffusion approach is given. This is
due to the fact that nanoparticles need to be described by a formalism that explains their
diffusivity in the bloodstream. In the fourth section, some probabilistic aspects related to
nanoparticles are described. In the fifth section, the Bayesian probability as the final station
in the sequence of uptake and internalization emerges in a coherent manner. Finally, the
conclusion of the paper is presented.
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Figure 1. Sketch of a three-phases process: (a) injection, (b) diffusion, transit, (c) arrival and internal-
ization, of nanoparticles into blood stream. It is hypothesized the hybrid view by which the entire
process would consist in electrodynamics, diffusion and global probability. The circle indicates that
while angiogenesis has started, nanoparticles can also travel through the created vessels.

2. The Electrodynamic Model

Since nanoparticles are, in general, made of metals, citrate-coated gold nanoparticles
have been demonstrated to be stable in an aqueous solution while they bear a negative
charge [18]. Furthermore, they have been shown to flip to the opposite charge over their
surface. Because of this, forces with a positive sign constitute an attractor volume of
albumin, which are negatively charged proteins [19]. Imminently, the electric charge
constitutes a relevant factor and the implications should be stressed within the context
of TDD. Consider, for example, that nanoparticles have a spherical shape with a surface
charge density given by σ = q/4πr2, by which the charge of nanoparticles can be written
as q = 4πσr2 with σ being the surface charge density (assumed to be constant in time for all
nanoparticles). In this way, one can wonder if nanoparticles traveling along the bloodstream
can lose their initial geometry [20,21]. In this sense, the radius might be varying in time.
Thus, in this scenario, one can write the charge as q(t) = 8πσ

∫ r(t)
0 rdr = 4πσr2(t). For a

couple of nanoparticles separated by distance R with different radii (a particular case),
the corresponding Coulomb repulsion force, with εB—the dielectric constant of interstitial
fluid reads

F =
4πσ1σ2r2

1(t)r
2
2(t)

εBR2 . (1)

Proteins like albumin, with a negative electric charge, create aggregation over nanopar-
ticles and electric work as well. With this, the required electric work to move a charge along
displacement x can be written as:

W = Fx =
4πσ1σ2r2

1(t)r
2
2(t)x

εB(R + x)2 =
4πσ1σ2r2

1(t)r
2
2(t)

εBR2(1 + x
R )

2 . (2)

With the energy given above, it is possible to derive the energy distribution (for all
nanoparticles) based on the well-known Boltzmann–Maxwell distribution. For instance,
consider a case where all nanoparticles have the same charge density σ1 = σ2 = σ; then,
the statistical distribution for all surface charge densities is written below as

B(σ) = N
√

π

σ
Exp

(
−

4πσ2r2
1(t)r

2
2(t)

kTεBR2(1 + x
R )

2

)
, (3)
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where N is a normalization constant depending on the electric characteristics of nanoparti-
cles. To some extent, it is analogous to the case of plasma physics where the electrodynamics
adjust well to kinetic theory, yielding Boltzmann–Maxwell statistics [22]. With this, the
system has a well-defined probability of surface charge density B(σ). Indeed, it can be
associated with Shannon’s entropy [23] such that the universal probability distribution
function reads

P(σ) =
[

Exp

(
− 1

N

√
σ

π

4πσ2r2
1(t)r

2
2(t)

kTεBR2(1 + x
R )

2

)]N
√

π
σ

. (4)

Entropy would emerge from the lapse of time by which same-sign nanoparticles are
exerting forces, with each varying their transit towards the target. (Although this goes
beyond the scope of paper, the electrical behavior of nanoparticles might be investigated
directly with the use of theories based on thermodynamics and entropy.) In this manner, the
electric work performed by nanoparticles acquires the mathematical structure of Shannon’s
entropy so that W = LogP .

On the other hand, the Coulomb force can incorporate the concept of volumetric
charge density under the assumption that a transporter of nanoparticles containing a net
charge exists, as commonly employed in TDD schemes [24]. The net charge q =

∫
ρdV

suggests denoting the Coulomb force as

F =
1

4πεB

∫
ρ1dV1

∫
ρ2dV2

(R + x)2 =
1

4πεB

∫
ρ1dV1

∫
ρ2dV2

R
(
1 + x

R
)2 . (5)

By using the sum with the restriction ∑p≥2
1
p!
( x

R
)p = 0, one obtains

1 +
x
R

= 1 +
x
R
+ ∑

p≥2

1
p!

( x
R

)p
= e

|x|
R , (6)

so that Equation (5) can be written as

F =
1

4πεR

∫
ρ1dV1

∫
ρ2dV2e−

2|x|
R . (7)

The focus of interest is when the cargo or transporter has a spherical geometry, where
the force is written as

F =
4π

εR

∫
ρ1(r1, t)r2

1dr1

∫
ρ2(r2, t)r2

2dr2e−
2|x|

R . (8)

Some approximations are still needed; thus, the variables s and t are introduced.
Because of this, the following changes are valid: r1 → s and r2 → s. Thus, densities are
now dependent on a single variable s having units of distance. When these densities are
out of integrations, Equation (8) acquires a simplified form:

F =
4π

εR
(r1r2)

3

9
ρ1(s, t)ρ2(s, t)e−

2x
R . (9)

Moreover, consider the case where nanoparticles have the same density—ρ1(s, t) =
ρ2(s, t) = ρ(s, t); then, Equation (9) is as follows:

F =
4π

εR
(r1r2)

3

9
|ρ(s, t)|2e−

2x
R . (10)
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Since all electrical forces along the bloodstream are of instantaneous nature, Equa-
tion (10) is expressed as a function of a Dirac-Delta function in the sense that

F(T) =
4π

εR
(r1r2)

3

9
e−

2x
R δ(t− T)|ρ(s, T)|2. (11)

In addition, the transported impulse I is given by

I =
∫

dTF(T) =
4π

εR
(r1r2)

3

9
e−

2x
R

∫
dTδ(t− T)|ρ(s, T)|2. (12)

The impulse written above is a consequence of the usage of macroscopic observables.
So, one can state that, so far, Newtonian physics support the derived expressions.

3. The Diffusion Model

It should be noted that the scenario of study in this paper has limitations. For example
the opted approach is focused on a small segment of the bloodstream (for example, it can be
seen in the image of Figure 1). In the case of nanoparticles, molecular effects would emerge
in a natural way; however, this effect is discarded. Because a macroscopic scenario is
assumed, classical laws apply as well [25]. It is also feasible to assume that the direction of
velocity of blood flow is parallel to the longitudinal symmetry of arteries or veins. This is an
important argument to neglect the effects of drag forces (as well as Brownian motion) so that
the usage of the Fokker–Planck equation, for example, might not be coherent in the context
of the present study. The dynamics of the injected nanoparticles into the bloodstream can
be modeled, for example, by an equation of transport. Under this view, Fick’s first law
applies as well. Thus, current J(s, t) and nanoparticle density ρ(s, t) are related through
J(s, t) =−D∇ρ(s, t), with D being the diffusion constant. It should be noted that s has units
of distance. Continuity can be demanded in the sense that nanoparticles are unstoppable
while they are in the bloodstream. Then, Fick’s first law is combined with the continuity
equation dρ/dt + ∇ · J(s, t) = 0. In this way, one obtains the diffusion equation dρ/dt =
D∇2n(s, t) [26]. It clearly demonstrates the equivalence between Fick’s first law and the
diffusion equation [27]. In the past, the diffusion equation has been used as a trusted
first approximation for the transit of nanoparticles moving along the bloodstream [28–31].
Also, one can see that Equation (12) is still incomplete because no specific information of
volumetric charge densities ρ(s, t) is known. As depicted in Figure 1, the central idea of this
paper consists in the parallel displacement of nanoparticles along the arteries. Therefore, it
is suggested to employ the diffusion equation in its simplest representation (one dimension)
for densities of charge that are under variation in space and time. In this way, one can use

dρ

dt
= D

d2ρ

ds2 . (13)

This can be rewritten as dρ
ds

ds
dt = D d2ρ

ds2 ⇒
dρ
ds = D

v
d2ρ

ds2 , where only the longitudinal
displacement is considered, defined as v = ds

dt (again, it is remarked that the direction
is parallel to the artery, as seen in Figure 1). Therefore, Equation (13) can be written as
d2ρ

ds2 − v
D

dρ
ds = 0, yielding the trivial closed-form solutions

ρ(s) = a1Exp
[√

v
D

s
]
+ a2Exp

[
−
√

v
D

s
]

. (14)

It should be noted that a1 and a2 have units of charge per unit of volume. Solution
Equation (14) is inserted into Equation (11), yielding that the Coulomb force now depends
on the solutions of the diffusion equation. Thus, one can write

F =
4π(r1r2)

3e−
2x
R

9εR

∣∣∣a1e[
√

v
D s] + a2e[−

√
v
D s]
∣∣∣2. (15)
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Equation (15) denotes the Coulomb force between a pair of volumetric charge densities.
However, this force depends on the diffusion equation solutions that, in turn, depend on
the diffusion coefficient D. The factor e−

2x
R guarantees the field-to-distance criterion.

4. Efficiency of Drug Delivery Based on Probabilities

The success of an event of drug delivery can be measured in terms of the number of
nanoparticles that have been internalized into the tumor. Consider n nanoparticles injected
into the bloodstream at time t. It is expected that at a subsequent time t + tM, a fraction
of them will reach the tumor. Here, tM denotes the time at which nanoparticles reach the
surface of the tumor. Thus, only a fraction of them reach the target due to interactions with
blood plasma, cells, proteins, etc. [32]. Under this view, a new quantity is defined as the
efficiency of delivery, which can be written as

E(t) =
nAR(t)

nFR(t) + nRE(t)
, (16)

with nAR(t), nFR(t) and nRE(t) being the number of effective nanoparticles that have
reached the target, the ones that are free of interactions (that are not undergoing electrical
interactions) and the ones that have had chemical or electrical rejection along their path to
the tumor, respectively. It should be remarked that nAR(t) + nFR(t) + nRE(t) = nTO is the
total number of injected nanoparticles.

Equation (16) can be seen from another angle, whereby this efficiency abandons its
deterministic status and departs to a probabilistic territory. This can be written as

E(t) =
nAR(t)

nFR(t)
[
1 +

(
nRE(t)
nFR(t)

)] . (17)

Under the assumption that ∑m 1/m! ( nRE(t)
nFR(t)

)m = 0 for m ≥ 2, Equation (17) can be
written again as

E(t) =
nAR(t)
nFR(t)

[
Exp

(
−nRE(t)

nFR(t)

)]
. (18)

If the rate nRE/nFR is proportional to t, then the negative exponential might be seen
as a pessimistic scenario in which the efficiency falls down in time. Equation (18) also
manifests that the entire process of drug delivery would be in risk. Therefore, biochemical
compounds and proteins like albumin would decrease the chance to maximize the efficiency
of sent doses. Then, it is strongly desired that such efficiency exhibits the highest values.
Mathematically speaking, it is desired that efficiency behaves as a distribution that exhibits
peaks [33].

With the existence of such negative aspects, it is clear to expect the failure of the TDD
scheme. A crude view of the TDD scheme might be to consider to the system composed by
the nanoparticles–tumor pair through the formulation of signal and background. From this
idea, efficiency can be also be written by another equation that reads

P =
na

na + nr
, (19)

with nr (background) being the ones that were rejected by the target. Thus, one can
wonder as to what is the probability that a number of injected nanoparticles can reach
their target while conserving their biochemical and electrical properties? Inspired by
probabilistic matrix factorization (Equation (3) of Ref. [34], by which a form of conditional
probability was anticipated), one can expect a product of probabilities. The probability of
internalization can be written as a function of a finite number of probabilistic variables ξL
(including the random ones, if any) as follows:
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P(ξ1, ξ2, ..., ξL) =
L

∏
`=1

p`(ξ`). (20)

4.1. Gaussian Distributions

From Equation (18), the well-known Gaussian distributions can be derived inside the
context of TDD. Consider the assumption that

nRE(t)
nFR(t)

= βt`, (21)

with β being a free parameter. From Equation (18), one obtains the following:

E(t) =
nAR(t)
nFR(t)

[
Exp

(
−βt`

)]
, (22)

by which one can recognize the case of ` = 2 as the Gaussian profile. When β = 1
∆2 ,

Equation (22) can be also written as

E(t) =
nAR(t)
nFR(t)

[
Exp

(
− (t− tC)

2

∆2

)]
, (23)

with tC being the critical time that yields the highest probability of event. But, of course, it
would not be the only probabilistic manifestation of an event involving the internalization
or rejection of nanoparticles (see again Ref. [14]).

One can define more assumptions from Equation (18) under a time-dependent scenario.
In order to explore more probability distribution functions that would emerge inside this
context, consider the approximation

nAR(t)
nFR(t)

= αt`−1. (24)

Some restrictions on them can be applied such as, for example, the requirement

α� βt, (25)

in the scenario where the number of nanoparticles free of interaction is bigger than that of
the ones that reached the target (which is a pessimistic scenario). Then, one can write down

βt
α
≈ βt

α
−
(

βt
α

)3
+ .... ≈ sin

(
βt
α

)
, (26)

⇒ nRE(t) = sin
(

βt
α

)
nAR(t), (27)

with β/α units of frequency. The sinusoidal behavior of the rate nRE(t)/nAR(t) can be
understood in terms of electrical oscillations originating from Coulomb forces.

4.2. Weibull and Lorentzian Distributions

The Gaussian distribution might not be the unique distribution that models the effi-
ciency of nanoparticles. With Equations (21), (22) and (25) one obtains

E(t) = αt`−1
[
Exp

(
−βt`

)]
, (28)

that takes the form of the well-known Weibull distributions. Equation (28) expresses the
fact that the efficiency of injected nanoparticles acquires a maximum for some values of
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free parameters α and β, which would give the peaks of distributions. Turning now to
Equation (17), one can see that with the replacements from Equations (21), (24) and (25)
one obtains

E(t) =
αt`−1

1 + βt`
. (29)

It is evident that a peaked behavior emerges with ` = 2. Such a form is known as the
Lorentzian distribution with the change t→ t− tC and it reads

E(t)|`=2 =
αt− tC

1 + β(t− tC)2 , (30)

with tC being the critical time, as written in Equation (23).
More distributions can also be generated. Consider, for example, the following definition:

nAR(t)
nFR(t)

= γ(t). (31)

As a consequence, Equation (18) can be rewritten as

E(t) = γ
[
Exp

(
−(β̃t)`

)]
. (32)

Now, one can see that β̃ with units of t−1 is also affected by the exponent `. Inspired
by the deterministic relation F/mv = dv/ds, with F and m being the mechanical force and
mass of nanoparticles, respectively, β = v

s . In conjunction to this, γ = g(v, s, `), which
conveys to write down an equation for the efficiency as follows:

E(t) = g(v, s, `)

[
Exp

[
−
(

vt
s

)`
]]

, (33)

with v being the velocity of nanoparticles (which is assumed to be the same of blood in the
artery). The function g(v, s, `) is not fully unknown. This can be derived from the existence
of a flux of probability F (t), which can be written as

F (t) = Exp

[
−
(

vt
s

)`
]

. (34)

Because there is a degradation of the initial volume of injected nanoparticles with time,
the negative derivative of flux with respect to velocity restores the efficiency and reads

E(t) = −dF (t)
dv

= − `

v

(
vt
s

)`−1
[

Exp

[
−
(

vt
s

)`
]]

. (35)

Therefore, γ=g(v, s, `) = − `
v
( vt

s
)`−1. It is noteworthy that E(t) can be well related to

a Weibull distribution. For example, in the case when `=2, one arrives at the efficiency per
unit of velocity by

E(t) =
dF (t)

dv
=

2t
s

[
Exp

[
−
(

vt
s

)2
]]

. (36)

One can note that E(t) acquires units of 1/v while E(t)× dv has units of flux. It is clear
that the TDD scheme is not based on a single group velocity along the bloodstream. Instead,
the efficiency is constituted by the finite contribution of a set of velocities corresponding to
several segments sj.
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E(t) =
J

∑
j=1

2tj

sj

Exp

−(vjtj

sj

)2
. (37)

As seen in [35], injected drug delivery would exhibit different dynamics depending on
the transit along the arteries in conjunction with the different cells that undergo interactions
with nanoparticles. Thus, for example, the drug absorption is a consequence of the net
efficiency among the vascular, extracellular and antigen-binding channels. By virtue of
repulsion and attraction forces among nanoparticles due to Coulomb’s law (Equation (31)
of Ref. [36]), one can assume that vj = v0sin

( vjtj
sj

)
. Inserting this into Equation (22), for J,

one obtains aggregations of nanoparticles:

E(t) =
J

∑
j=1

2tj

sj

Exp

−
v0tjsin

( vjtj
sj

)
sj

2
, (38)

and for tj → t, it means all aggregations of nanoparticles arrive at the same velocity and
time (with sj → s); then, the efficiency has the form

E(t) =
2t× J

s

Exp

−
v0tsin

(
(x−sc)t

sτ

)
s

2
. (39)

It is noted that the velocity v was rewritten as (x− sc)/τ, with sc being the critical
distance that plays the role as phase in the sense that there exists a minimal time that makes
the arrival of nanoparticles to the target different.

In Figure 2 above, the cases of up to three critical distances when v0t/s = 1 have
been plotted.

Figure 2. The theoretical efficiency of arrival up to for 3 different critical distances. While these
distances are increasing, the efficiencies turns out to be reduced as a consequence of scattering of
nanoparticles at the blood stream. Thus one observes a transition from Weibull (sc = 3.5 and sc = 4.0)
to Gaussian distributions (sc = 5.0).

4.3. The Diffusion–Coulomb Efficiency

The fact that equations above have suggested to some extent the incorporation of
probabilistic ingredients for a robust formulation, one can go back to Equation (16) to
replace the diffusion and electrodynamics. Thus, in the first instance, one can write
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E(t) =
4π(r1r2)

3e−
2x
R

9εR

∣∣∣aARe[
√

v
D s] + aARe[−

√
v
D s]
∣∣∣2

4π(r1r2)3e−
2x
R

9εR

∣∣∣aFRe[
√

v
D s] + aFRe[−

√
v
D s]
∣∣∣2 + 4π(r1r2)3e−

2x
R

9εR

∣∣∣aREe[
√

v
D s̄] + aREe[−

√
v
D s̄]
∣∣∣2 (40)

In a minimal model (where nanoparticles defined as aAR, aRE and aFR exhibit the same

diffusion and electrodynamics), the term 4π(r1r2)
3e−

2x
R

9εR is common to all of them. This implies
the need to simplify Equation (40). Thus, one arrives at a compact form of efficiency:

E(t) =
1

aFR

∣∣∣aARe[
√

v
D s] + aARe[−

√
v
D s]
∣∣∣2∣∣∣e[√ v

D s] + e[−
√

v
D s]
∣∣∣2 + aRE

aFR

∣∣∣e[√ v
D s̄] + e[−

√
v
D s̄]
∣∣∣2 . (41)

Consider the change s→ s̄ by which rejected nanoparticles acquire a random distance
s̄ after failing to internalize the tumor. Here, it should be noted that there exists the
possibility that nanoparticles can pass through the tumor in the hypoxia region. Clearly,
this is against the purpose of TDD schemes. Only the evidence at the patient’s outcomes, so
as to observe the effect of injected dose delivery and its relation to the percentage of tumor
degradation, can be relevant to estimate the randomness of the scheme. Consider now
an optimistic scenario by which aAR � aFR; then, Equation (42) depends directly on the
quantity of nanoparticles in the assumed cases and the fraction aRE

aAR
, because Equation (41)

is rewritten as

E(t) =

∣∣∣e[√ v
D s] + e[−

√
v
D s]
∣∣∣2∣∣∣e[√ v

D s] + e[−
√

v
D s]
∣∣∣2 + ∣∣∣ aRE

aAR

∣∣∣2∣∣∣e[√ v
D s̄] + e[−

√
v
D s̄]
∣∣∣2 . (42)

In order to interpret Equation (42), special attention has to be paid to the term that
gives accounts of rejected ones. To accomplish this, some approximations were applied. For
example, D � v× s and, with this, the numerator has the value of 2. Besides, as assumed

above, the fraction aFR
aAR
≈ 0. As usual, D has units of L2/T. The exponential part is

√
s̄
D v

with v → v0sin2(κs); then, from above,
√

s̄
D v0sin2(κs) =

√
s̄
D v0sin(κs) =

√
t
τ sin(κs) with

τ = `2

s̄v0
approximated to be 1 in units of time. With these calculations, one can rewrite

Equation (42) as E(t) = 2
(exp[

√
tsin(s)]+exp[−

√
tsin(s)])2 with κ with units of L−1. In praxis, κ

is a parameter that can be known from the nanoparticles’ manufacturer and can acquire
the value of 1. The why of the sinusoid approximation is because the expected flipping
property produces either attraction or rejection.

In Figure 3, the corresponding contours plot Equation (42) are displayed. It is easy to
see that in a scenario dictated by determinism, one would obtain only lines showing the
linearities of the simple dynamics of nanoparticles by following the same blood velocity.
However, the left-side and right-side panels show a nontrivial morphology, a fact that
allows the incorporation of probabilistic aspects as a direct counterpart of determinism. As
seen in the left-side panel of Figure 3, the contour plot exhibiting the maximum value of
efficiency turned out to be in the order of 12%, which is favorable in the sense that a small
efficiency translates to a poor Coulomb interaction among the nanoparticles such that there
is a chance that a substantial fraction of them might reach their target with minimal electrical
interaction. In other words, electrical interactions would trigger noise or background effects
on the TDD scheme. In the right-side panel, one can observe arrows pointing to the values of
null efficiency due to Coulomb forces working against the propagation of nanoparticles (the
reader should note that, so far, a hybrid description combing probability, electrodynamics
and diffusion has been presented). In fact, for distances of 6.6 to 7.8 (a.u.) and for times of



Mathematics 2023, 11, 4528 11 of 16

2.5 (a.u.), one can see that the supposed flux of nanoparticles exhibit a slow displacement
that is free of Coulomb interactions. In contrast with other space–time regions, the fact
that the nanoparticles are traveling fast might not be guaranteeing optimal drug delivery;
instead, it would be affected by Coulomb interactions as well as randomness.

Figure 3. Contour plots of Equation (42) as function of argument
√

v/D× s. (Left-side): the case
when v = s/t ≈ 0 displaying the maximum efficiency of order of 12%. (Right-side): the case with the
approximation sin(κs) is applied (see text below) displaying zones of a null efficiency due Coulomb
effects at the injected nanoparticles. Arrows are indicating the transition of a null efficiency to one of
order of 20%. Plots were done with package of Ref. [37].

5. Identification of Stochastic Events through Bayes’s Theorem

The use of the relation of efficiency E(t) = nAR(t)
nFR(t)+nRE(t)

can be associated in a straight-
forward manner to the well-known Bayes’s theorem. Nevertheless, a kind of balance
should be applied such that nAR(t) ≈ nFR(t). Only this assumption converts the efficiency
into one probabilistic relation compatible with Bayes scheme. With this, it is not difficult to
corroborate that Equation (42) has, to some extent, the structure of Bayes’s theorem [38]
known as

B =
PA ⊗ PB

PA ⊗ PB + (1− PA)⊗ PW
, (43)

which, applied onto Equation (43), acquires the following meaning if and only if T = N + M:
with T being the total number of sent nanoparticles.

• PA, the probability that N nanoparticles arrive at the tumor;
• PB, the probability that all of them achieve to internalize the tumor;
• 1− PA, the probability that M nanoparticles fail to reach the tumor;
• PW , the probability that 1− PA is wrong and nanoparticles were scattered off the tumor.

This is displayed in the image of Figure 4. It is clear that a number of nanoparticles
N can be internalized (also into the hypoxic zone, since there is no blockade reaction of
tumor cells against nanoparticles) with M being the ones that are rejected due to minimal
permeation as well as chemical imbalance due to the tumor microenvironment [39]. By
taking into account all these items, the direct correspondence with Equation (43) turns out
to be

PA ⊗ PB =
∣∣∣e[√ v

D s] + e[−
√

v
D s]
∣∣∣2, (44)

(1− PA)⊗ PW =

∣∣∣∣ aRE

aAR

∣∣∣∣2∣∣∣e[√ v
D s̄] + e[−

√
v
D s̄]
∣∣∣2, (45)
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and PW opts to be random since no tool would enable measurement of the verification if
1− PA is wrong or true. This is related to the capability for enhancing the permeability

of nanoparticles [40,41]. Indeed, the expansion e[−
√

v
D s̄] ≈ 1 −

√
v
D s̄ is used and, thus,

Equation (45) acquires the form

(1− PA)⊗ PW =

∣∣∣∣1−√ v
D

s̄ + e[
√

v
D s̄]
∣∣∣∣2∣∣∣∣ aRE

aAR

∣∣∣∣2. (46)

In Equation (44), one can note that PA = PB. This encompasses the employed theory
of the paper: Both arrival and internalization are dictated by the equation of diffusion
and electrodynamics. On the other hand, the probability of confirmation is delayed to
PA in the sense that only evidence concerning the effects of injected drugs in patients
can serve as a strong indicator of this mathematical abstraction. In this manner, from
Equation (46), the coefficients aRE and aAR can both be estimated from electrodynamics.
Consider the Coulomb force for rejection (with εB = 1). FRE = qBS NREQRE

x2
RE

, with qBS being the

net electric charge from free ions at the bloodstream and over the target (or tumor) and
QRE being the net charge of rejected nanoparticles. With the definition ρ = NREQRE/VRE,

FRE = qBSρREVRE
x2

RE
, which implies that ρRE = aRE =

FREx2
RE

qBCVRE
. The same procedure is applied

to estimate aAR, which is also expressed in terms of density as ρAR =
FARx2

AR
qBCVAR

, so that∣∣∣ aRE
aAR

∣∣∣2 =
∣∣∣ ρRE

ρAR

∣∣∣2 =
∣∣∣∣ FREx2

REVAR
FARx2

ARVRE

∣∣∣∣2. Now, Equation (42) can finally be written as the conditional

probability (depending on the diffusion and electrodynamics) of internalization according
to Figure 4, which reads as follows:

PINT(t) =

∣∣∣e[√ v
D s] + e[−

√
v
D s]
∣∣∣2∣∣∣e[√ v

D s] + e[−
√

v
D s]
∣∣∣2 + ∣∣∣∣ FREx2

REVAR

FARx2
ARVRE

∣∣∣∣2∣∣∣1−√ v
D s̄ + e[

√
v
D s̄]
∣∣∣2 . (47)

It is noteworthy that after applying approximations, the term that quantifies the
arrival is dictated by diffusion, whereas the term of rejection is the product of variables of
both diffusion and Coulomb. This product triggers the debate as to whether the shape of
nanoparticles must be calibrated according to the diffusive channels that exist in human
blood: minerals, plasma, albumin, etc.

Figure 4. Sketch for the probabilistic interpretation of Equation (42) by which it is argued that the
events of internalization and rejection might to be dictated by the Bayes’s theorem. It should be noted
that the hypoxic region is analogue to the case where nanoparticles are not arriving to tumor.



Mathematics 2023, 11, 4528 13 of 16

Bayesian Behavior Inside Linear Scenarios

In Figure 5, Equation (47) or Bayes probability has been plotted for two scenarios.
In both cases, one can see the deformation of the linear region as a consequence of the
dynamics of nanoparticles abandoning its deterministic behavior. In this subsection, the
choice κ = 1 is used. In the left-side panel, the dashed line is superimposed to contour
plot to note the transition between determinism and probability, where Bayes’s theorem
would apply well (in the sense that the efficiency now becomes a probability). Here, the

following approximation is used
∣∣∣∣ FREx2

REVRE
FARx2

ARVAR

∣∣∣∣2 ≈ x2
RE, as well as e[−

√
v
D s] → sin(x), which

also affects the exponential’s functions. The dashed line crosses the region with a high
Bayes probability at around 90%. Indeed, it can be seen as a linearity between time and
distance, yielding a constant velocity against the picture of classical forces (Coulomb-
like for examples) governed by accelerated nanoparticles due to Newtonian forces. A

different case is presented in the right-side panel where it was used e[−
√

v
D s] → sin2(s).

The dashed line does not follow a linear behavior; instead, it demonstrates the nonlinearity
of internalization in an entire Bayes scheme. For small s, one has sin2(s) ≈ (s− 1/6s3)2 =
s2 − s3/3 + s6/36. These nonlinearities would be in accordance with the events where
nanoparticles would arrive at the hypoxia zones [42]. This is of importance for estimating
the percent of nanoparticles that turned out to be lost and differencing them from those
that were scattered off the tumor surface. In addition, one can anticipate the percent of
failure against the ones that would exhibit a high probability to internalize a tumor or
objective tissue [43–45]. Thus, the difference between the percent of tumor degradation and
the percent of density of injected nanoparticles would provide a test in which TDD is either
purely a stochastic or deterministic process. This also would reach studies concerning
angiogenesis [46,47]. Finally, for the processes against internalization such as retention
and accumulation, although not directly observed, all of them would exhibit a side that is
unfavorable to the usage of targeted drug delivery [48], whose usage should come finally
from observed outcomes of the oncological treatment of patient.

Figure 5. Contour plots of Equation (47) showing the apparition of nonlinearities despite the linear
relation between time and space traveled by nanoparticles. Left-side: the case where the exponential
was approximated to be sinusoidal sin(x). Here it is noted a linearity between the relation space-time
(dashed line). Right-side: the case where it was opted by the sin2(x) expressing nonlinearity between
space and time as consequence of electrical forces hypothetically due to either rejection or attraction.
Plots were done with package of Ref. [37].

6. Conclusions

In this paper, from a simple formulation of efficiency that theoretically models the
internalization of nanoparticles into a target (a tumor, for example), the Bayes’s theorem
was derived. The efficiency acquired the mathematical structure of a conditional probability.
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For this, approaches based on the diffusion equation and classical electrodynamics have
been incorporated. The displayed contour plots have shown that probabilities are strongly
dependent on space–time. In accordance with the hypothesis of this paper, kinetics have a
well-established dependence on the Coulomb interactions. This justifies the diffusivity of
nanoparticles. Therefore, a chain of events ending in the Bayes’s theorem was identified.
In other words, this study derived a mathematical formulation that is interpreted as the
electrodynamics–diffusion–Bayes sequence. With this, the internalization of nanoparticles
into a target might be exhibiting the departure from a deterministic territory to one gov-
erned entirely by stochastic processes and conditions. The plots of the last section have also
shown the departure from linear to nonlinear territories. In this manner, this fact would
suggest that TDD would be entirely governed by stochastic dynamics. In a subsequent
study, the Monte Carlo method will be used to test the capabilities of Bayes probability.
Under the approach of the developed theory of this paper, the randomness of TDD will be
measured in order to estimate patient recovery [49,50] and the relation with the success
probability of TDD techniques.
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