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Abstract: There are several techniques for the removal of pharmaceuticals (drugs) from wastewater;
however, strengths and weaknesses have been observed in their elimination processes that limit their
applicability. Therefore, we aimed to evaluate the best techniques for the removal of pharmaceuticals
from municipal and hospital wastewater. For this, a non-experimental, descriptive, qualitative–
quantitative design was used, corresponding to a systematic review without meta-analysis. Based on
established inclusion and exclusion criteria, 31 open-access articles were selected from the Scopus,
ProQuest, EBSCOhost, and ScienceDirect databases. The results showed that high concentrations
of analgesics such as naproxen (1.37 mg/L) and antibiotics such as norfloxacin (0.561 mg/L) are
frequently found in wastewater and that techniques such as reverse osmosis, ozonation, and activated
sludge have the best removal efficiency, achieving values of 99%. It was concluded that reverse osmo-
sis is one of the most efficient techniques for eliminating ofloxacin, sulfamethoxazole, carbamazepine,
and diclofenac from municipal wastewater, with removal rates ranging from 96 to 99.9%, while for
hospital wastewater the activated sludge technique proved to be efficient, eliminating analgesics and
antibiotics in the range of 41–99%.

Keywords: technique; removal; pharmaceuticals; wastewater; efficiency

1. Introduction

In recent years, analytical techniques have been developed that allow the recognition
and quantification of the presence of many pollutants—and even micropollutants—at
low concentrations (from ng/L to µg/L) in water [1,2]. Among them are the so-called
emerging contaminants (ECs), whose presence in and possible effects on water bodies cause
special concern [3]. According to Jari et al. (2022), these emerging contaminants are not
fully regulated; however, they are used in large quantities, which favors their presence in
wastewater and surface water; for these reasons, they can be harmful to aquatic ecosystems
and human health [4].

Similarly, Morosini et al. (2017) indicated that this group includes drugs and pharma-
ceutical compounds (PhCs)—products that have been widely studied in recent years due
to their presence in the aquatic environment and their negative impacts [5]. In addition,
the attention they receive is mainly due to their high consumption, production, improper
disposal, bioaccumulation, and non-biodegradable nature [6]. According to Silva et al.
(2020), drugs are metabolized and excreted after human ingestion, leading to a mixed dis-
charge of active ingredients and metabolites into the sewage networks [7]. In the same line,
Zhang et al. (2016) indicated that PhCs (pharmaceuticals) enter the environment mainly
through discharges from wastewater treatment plants (WWTPs), hospital effluents, indus-
trial effluents, runoff, and human and animal excreta [8]. Similarly, Krakkó et al. (2019)
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argued that the main sources of contamination by pharmaceuticals are related to hospital
and municipal WWTP effluents, with hospital effluents containing higher concentrations
of certain PhCs [9,10]. In addition, due to the COVID-19 pandemic, the consumption of
pharmaceutical products has increased worldwide, raising their concentrations in wastew-
ater [11]. Regarding the above, Krishnan et al. (2021) stated that traditional wastewater
treatment methods are not designed to remove PhCs, causing effluents to be discharged into
water bodies without being efficiently treated. This causes negative impacts on biodiversity
and favors resistance to antibiotics in some bacteria [12]. Therefore, several techniques are
currently applied for the elimination of drugs, based on physical, chemical, and biological
methods [13].

In this sense, each treatment technique has advantages and limitations; for exam-
ple, treatment techniques based on physical methods such as adsorption and membrane
filtration have been proven to remove drugs effectively. However, adsorption has the
limitation of only transferring pollutants from the water to a porous structure, resulting
in residues that will later require treatment or final disposal [14]. Likewise, membrane
filtration faces challenges such as high operational energy demand [15]. Techniques based
on chemical methods such as ozonation and photocatalysis have also been shown to be
effective in removing drugs [16]. However, ozonation can generate harmful byproducts,
and photocatalysis is one of the most investigated techniques, but its energy demand and
its operational and maintenance costs have prevented large-scale research to date [17]. On
the other hand, techniques based on biological methods are usually less expensive, but their
removal of some pharmaceuticals is deficient; for example, the removal of pharmaceuticals
by activated sludge will depend on the characteristics of these pollutants, as well as on the
conditions under which the operation takes place [18]. Another biological technique with
promising results in pharmaceutical drug removal is membrane bioreactors; however, their
large-scale application has limitations, such as membrane fouling and operating costs [19].

Similarly, the use of white-rot fungi and their oxidoreductase enzymes to remove
drugs has few reports in non-sterile conditions and real wastewater, and large-scale im-
plementation of these techniques requires overcoming problems such as the addition of
complementary substrates, partial re-inoculation of fresh fungi, or the use of extended
hydraulic retention times [20]. It is worth mentioning that fungal treatment has shown very
promising potential in drug removal; however, discussion of these techniques is beyond
the scope of this review, so readers are encouraged to consider these approaches in drug
removal as well. This review focuses on data from studies that were conducted using
real, non-synthetic wastewater in order to provide a picture of real systems. Additionally,
hybrid treatments that integrate two or more treatment methods (i.e., physical, chemical,
and/or biological) to facilitate pollutant removal [21] were left out of the analysis, with the
objective of evaluating the removal efficiency of each method separately.

The main objective of this review is to show the best techniques for removing phar-
maceuticals from municipal and hospital wastewater, due to the worldwide increase in
the consumption of pharmaceuticals and their concentrations in wastewater. Taking into
account that conventional treatments used in WWTPs do not efficiently remove PhCs,
causing effluents to be discharged with high contents of these compounds in different
water bodies, there is a need to identify and evaluate new techniques to solve this problem.
At the same time, we provide information related to these techniques, which can help to
avoid negative impacts on aquatic biodiversity and human health. In addition, this research
serves as a basis for future research to carry out experimental investigations.

2. Materials and Methods

This was a basic, descriptive, documentary-type research study whose bibliographic
information was considered within the period 2016–2022, based on the evaluation of the
best techniques for removing pharmaceuticals from municipal and hospital wastewater,
establishing the types of pharmaceuticals present in municipal and hospital wastewater, and
evaluating the percentage of pharmaceutical removal according to the treatment methods
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applied and the type of wastewater. An a priori categorization matrix was elaborated for
this research, considering the categories and subcategories shown in Figure 1.
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2.1. Data Collection Techniques and Instruments

The research was conducted using the Scopus, ProQuest, EBSCOhost, and ScienceDi-
rect databases, considering original articles from internationally indexed journals that met
the inclusion and exclusion criteria of the topic. The analysis technique was based on the
work of Marín-González et al. (2018), because it encompasses analytical–synthetic process-
ing, which includes bibliographic description, classification, extraction, and preparation of
reviews [22].

2.2. Procedure

In this research, the scientific articles related to the studied topic were identified us-
ing keywords and their respective combinations through Boolean operators, as shown in
Figure 2, considering open-access scientific articles published in English from 2016 to 2022.
Likewise, the use of synthetic wastewater as a matrix and the use of hybrid techniques for
the elimination of drugs in the investigations were considered exclusion criteria for the
present systematic review. Subsequently, the articles that met the aforementioned criteria
were organized according to the research design used in the publications, separating publi-
cations with a pre-experimental design with no strict control of variables, corresponding to
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studies conducted in the field; those with a quasi-experimental design where some vari-
ables are controlled, understood as those studies conducted at a pilot level; and those with
a pure experimental design where all variables are controlled, which typically correspond
to studies at the laboratory level. In addition, 31 peer-reviewed articles from open-access
indexed journals were considered. According to the Scimago Journal & Country Rank (SJR)
website, as of 2021, 74.2% of the indexed journals analyzed belonged to the Q1 quartile,
and 25.8% belonged to the Q2 quartile (see Table S1). The data collection form can be seen
in Table 1, which contains the information necessary to obtain the research results.

On the other hand, Figure 2 shows the schematization of the selection process for the
scientific articles included in this research. This process allowed the compilation of a total
of 468 publications, eliminating 54 duplicated publications (414 remaining publications);
then, 86 publications corresponding to book chapters and review articles were excluded
(328 remaining), and then a further 174 publications were eliminated because, after ana-
lyzing their abstracts, it was evident that they would not help in the development of the
objectives (154 remaining). Subsequently, the remaining scientific articles were subjected
to an analysis applying the established exclusion criteria, and 123 scientific articles were
excluded. Finally, the remaining 31 scientific articles were included for analysis and critical
evaluation in this study. The 31 studies included in this research were conducted in coun-
tries such as Spain (8), China (3), Portugal (2), Nigeria (2), Cyprus (1), the United States
(1), Turkey (1), Colombia (1), Sweden (1), India (1), South Korea (1), Finland (1), Greece
(1), South Africa (1), Denmark (1), Saudi Arabia (1), Kenya (1), Slovakia (1), Iran (1), and
Mexico (1).
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Table 1. Data collection form.

Code
Research
Design

Type of
Wastewa-

ter

Removal
Method

Removal
Technique

Type of Pharmaceutical (Range of Initial Concentration in ng/L) and (Range of Removal Percentage (%))
Ref.

Antibiotic Antiepileptic Analgesic Hormones

Ciproflox-
acin (CIP)

Norflox-
acin

(NOR)

Ofloxacin
(OFL)

Enroflox-
acin

(ENR)

Sulfamet-
hoxazole

(SMX)

Sulfadi-
azine
(SDZ)

Carbama-
zepine (CBZ)

Paracetamol or
Acetami-

nophen (ACE)

Diclofenac
(DCF)

Ibuprofen
(IBU)

Naproxen
(NPX)

Ketoprofen
(KET)

Estrone
(E1)

17-β-
estradiol

(E2)

Estriol
(E3)

17α-
ethinylestr-
adiol (EE2)

H01 Pre-
experimental Hospital Biological Activated

sludge

(<LOQ/
2369);

(−32%/
77%)

(n.d./
565.3);
(−22/
99%)

(41.1/720.7);
(−116%/−9%)

(n.d./<LOQ);
(-) [23]

H02

Pre-
experimental Hospital Biological Activated

sludge
(120/2000);

(49%)
(100/1530);

(71%)
(n.d./n.d.);

(-)
(21,270/119,500);

(88%)
(330/53,400);

(68%)

(<LOQ/
650);

(64%)

(13/53);
(28%)

(8/35);
(35%)

(134/1480);
(32%)

(2654/9833);
(76%) [24]

Pre-
experimental Hospital Biological Activated

sludge
(120/9110);

(84%)
(70/820);

(41%)
(n.d./n.d.);

(-)
(11,060/57,650);

(93%)
(1090/63,370);

(97%)

(<LOQ/
700);

(55%)

(4/40);
(83%) (1/47); (-) (27/512);

(77%)
(881/1041);

(26%) [24]

H03

Quasi-
experimental Hospital Chemical Ozonation (960);

(90%) (80); (90%) (<LOQ);
(-) [25]

Pure
experimental Hospital Chemical Ozonation (750);

(90%) (30); (90%) (850);
(90%) [25]

H04

Pre-
experimental Hospital Biological Activated

sludge
(5600);
(99%)

(30);
(96%) (151); (73%) (12,400); (99%) [26]

Pre-
experimental Hospital Biological Activated

sludge
(2180);
(99%)

(132);
(99%) (73); (99%) (12,300); (98%) [26]

M01

Quasi-
experimental Municipal Physical

Nanofiltration
using

TFC-SR2

(1000);
(48%) (1000); (38%) (300);

(58%)
(1000);
(48%)

(300);
(55%) [27]

Quasi-
experimental Municipal Physical Nanofiltration

using NF-270
(1000);
(95%) (1000); (78%) (300);

(97%)
(1000);
(84%)

(300);
(96%) [27]

Quasi-
experimental Municipal Physical

Nanofiltration
using

MPS-34

(1000);
(96%) (1000); (85%) (300);

(99%)
(1000);
(88%)

(300);
(99%) [27]

M02 Pure
experimental Municipal Chemical

Heterogeneous
TiO2 photo-

catalysis

(100,000);
(87%) [28]

M03 Quasi-
experimental Municipal Physical Reverse

osmosis
(570);

(88.6%)
(920);

(95.9%) (200); (95.7%) (27,000); (59.3%) (160);
(71.3%)

(12,000);
(79.2%)

(8900);
(83.1%)

(160);
(100%)

(51);
(100%) [29]

M04 Quasi-
experimental Municipal Biological

Membrane
bioreactor

(MBR)

(n.d./89);
(70.1%)

(14/226);
(51.8%)

(100/912);
(61.8%)

(n.d./8);
(52.7%)

(12/92);
(72%)

(n.d./32);
(41%)

(78/158);
(88.2%)

(11/54);
(82%)

(42/162);
(95%) [30]

M05 Quasi-
experimental Municipal Physical

Adsorption
by granular

activated
carbon
(GAC)

(200,000);
(51%)

(200,000);
(68%) (200,000); (88%) (200,000);

(48%)
(200,000);

(55%)
(200,000);

(50%) [31]

M06 Pre-
experimental Municipal Biological

Membrane
Bioreactor

(MBR)

(220);
(66%)

(620);
(31%)

(1020);
(25%)

(27);
(15%)

(410);
(70%) [32]

M07 Pre-
experimental Municipal Biological Activated

sludge
(n.d./4200);

(78%)
(n.d./5300);

(41%)
(820/6500);

(28%)
(55,000/

623,000); (99%)
(460/6500);

(21%)

(8000/
53,000);
(99%)

(n.d./
38,000);
(89%)

(n.d./1700);
(85%) [33]
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Table 1. Cont.

Code
Research
Design

Type of
Wastewa-

ter

Removal
Method

Removal
Technique

Type of Pharmaceutical (Range of Initial Concentration in ng/L) and (Range of Removal Percentage (%))
Ref.

Antibiotic Antiepileptic Analgesic Hormones

Ciproflox-
acin (CIP)

Norflox-
acin

(NOR)

Ofloxacin
(OFL)

Enroflox-
acin

(ENR)

Sulfamet-
hoxazole

(SMX)

Sulfadi-
azine
(SDZ)

Carbama-
zepine (CBZ)

Paracetamol or
Acetami-

nophen (ACE)

Diclofenac
(DCF)

Ibuprofen
(IBU)

Naproxen
(NPX)

Ketoprofen
(KET)

Estrone
(E1)

17-β-
estradiol

(E2)

Estriol
(E3)

17α-
ethinylestr-
adiol (EE2)

M08

Pure
experimental Municipal Chemical Ozonation (263);

(86%) (894); (100%) (1138);
(98%)

(<LOQ);
(-)

(772);
(96%) [34]

Pure
experimental Municipal Chemical Ozonation (263);

(91%) (894); (100%) (1138);
(99%)

(878);
(48%)

(<LOQ);
(-) [34]

M09 Quasi-
experimental Municipal Chemical

Heterogen
eous TiO2

photocataly-
sis

(1,000,000);
(80%)

(1,000,000);
(100%) [35]

M10 Quasi-
experimental Municipal Biological

High-rate
algal pond

(HRAP)

(100/350);
(7.7)

(210/
120,000); (94.4)

(130/470);
(66.6)

(1400/
4600);
(75.7)

(3200/8100);
(46.3)

(110/120);
(55.8) [36]

H05

Pre-
experimental Hospital (20,590);

(-) (3440); (-) [37]

Pre-
experimental Municipal (7800); (-) (70); (-) [37]

H06

Pre-
experimental Hospital Biological Activated

sludge

(n.d./
120,000);

(-)

(340,000/
526,000);

(-)

(124,000/
198,000);

(-)
[38]

Pre-
experimental Hospital Biological

Membrane
bioreactor

(MBR)

(n.d./
100,000);

(-)

(372,000/
561,000);

(-)

(n.d./
147,000);

(-)
[38]

M11 Quasi-
experimental Municipal Physical Nanofiltration (135/3150);

(99%) [39]

H07

Pre-
experimental Municipal Biological Activated

sludge (346); (-) (348); (-) [40]

Pre-
experimental Hospital (2550); (-) (880); (-) [40]

Pre-
experimental Hospital (5360); (-) (45); (-) [40]

M12

Pre-
experimental Municipal Biological Activated

sludge
(45/2394);

(−50%)
(6/708);
(42.9%)

(12/
147,500);

(98%)

(4910/
521,700);

(98%)
[41]

Pre-
experimental Municipal Physical Reverse

osmosis
(78/4687);

(77%)
(34/288);

(96%)
(9/1184);
(58.3%)

(57/1311);
(54.1%) [41]

H08

Pre-
experimental Municipal Biological Activated

sludge
(48,000);

(-)
(45,000);

(-) [42]

Pre-
experimental Hospital Biological

Membrane
bioreactor

(MBR)

(39,000);
(-)

(36,000);
(-) [42]

Pre-
experimental Hospital Biological Activated

sludge
(166,000);

(-)
(32,000);

(-) [42]
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Table 1. Cont.

Code
Research
Design

Type of
Wastewa-

ter

Removal
Method

Removal
Technique

Type of Pharmaceutical (Range of Initial Concentration in ng/L) and (Range of Removal Percentage (%))
Ref.

Antibiotic Antiepileptic Analgesic Hormones

Ciproflox-
acin (CIP)

Norflox-
acin

(NOR)

Ofloxacin
(OFL)

Enroflox-
acin

(ENR)

Sulfamet-
hoxazole

(SMX)

Sulfadi-
azine
(SDZ)

Carbama-
zepine (CBZ)

Paracetamol or
Acetami-

nophen (ACE)

Diclofenac
(DCF)

Ibuprofen
(IBU)

Naproxen
(NPX)

Ketoprofen
(KET)

Estrone
(E1)

17-β-
estradiol

(E2)

Estriol
(E3)

17α-
ethinylestr-
adiol (EE2)

H09 Pure
experimental Hospital Chemical

Heteroge
neous TiO2
photocataly-

sis

(3,000,000);
(86.6%) [43]

H10 Pre-
experimental Hospital (2660); (-) (590); (-) (620); (-) (1790); (-) (80); (-) [44]

M13 Quasi-
experimental Municipal Biological

High-rate
algal pond

(HRAP)

(69.4/902.5);
(50.5%)

(9.6/42.4);
(0%)

(156.4/7781.1);
(100%)

(270.8/
2117.8);
(54.8%)

(713.3/
23,811.4);

(79%)
[45]

M14 Quasi-
experimental Municipal Biological

High-rate
algal pond

(HRAP)

(332/710);
(68%)

(502/557);
(−14%)

(12,133/15,611);
(100%)

(732/1030);
(46%) [46]

M15

Pre-
experimental Municipal Biological Activated

sludge

(n.d./
410,000);

(-)

(50/
94,000); (-)

(300/
1,370,000);

(-)

(50/
260,000);

(-)
[47]

Pre-
experimental Municipal Biological Activated

sludge
(n.d./

82,000); (-)
(n.d./

23,000); (-)
(n.d./

67,000); (-)
(40/

37,000); (-) [47]

Pre-
experimental Municipal Biological Activated

sludge
(n.d./

45,000); (-)
(50/

13,000); (-)
(60/

26,000); (-)
(10/

10,500); (-) [47]

M16 Pre-
experimental Municipal Physical Reverse

osmosis
(<LOQ);

(-)
(134);

(99.9%)
(150);

(99.9%) (412); (96.1%) (86);
(99.9%)

(78);
(8.9%)

(144);
(22.9%)

(616);
(71.1%) [48]

M17

Quasi-
experimental Municipal Chemical Ozonation (3.95);

(95.7%)
(4.68);

(99.9%)
(0.24);

(99.9%) [49]

Pure
experimental Municipal Physical

Adsorption
with

powdered
activated

carbon (PAC)

(3.95);
(34.4%)

(4.68);
(83.3%)

(0.24);
(99.9%) [49]

M18 Pure
experimental Municipal Chemical

Heterogen
eous TiO2

photocataly-
sis

(190,000);
(21%)

(198,000);
(27%)

(194,000);
(49 %) [50]

M19 Pre-
experimental Municipal Biological Activated

sludge (<LOQ); (0%) (77.3);
(91.4%)

(434);
(99.9%)

(444);
(97.4%)

(39.1);
(51.4%) [51]

M20

Pre-
experimental Municipal (157/320);

(-)
(213/677);

(-)
(44.6/116);

(-) (57.8/133); (-) (20,710/
67,340); (-)

(27/44);
(-)

(n.d./4750);
(-)

(1805/
4090); (-)

(77.6/
150.6); (-) [52]

Pre-
experimental Municipal (<LOQ/270);

(-)
(75/360);

(-)
(76/369);

(-) (110/220); (-) (33,180/
53,000); (-)

(14/53);
(-)

(75/5990);
(-)

(2000/
6085); (-)

(214/461);
(-) [52]

Pre-
experimental Municipal (27/62);

(-)
(58/205);

(-)
(99/150);

(-) (99/236); (-) (15,990/
54,680); (-)

(16/68);
(-)

(<LOQ/
2580); (-)

(1490/
3110); (-)

(149/363);
(-) [52]

M21 Quasi-
experimental Municipal Biological

Membrane
bioreactor

(MBR)
(630); (−25%) (1840);

(38%) [53]
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3. Results

The trends of publications related to the techniques for removing pharmaceuticals
from municipal wastewater (MWW) and hospital wastewater (HWW) were identified, with
290 publications on MWW and 178 publications on HWW, showing a lineal increase in
recent years (Figure 3). On the other hand, the results observed in Figure 3 are consistent
with the findings of Alvarino et al. (2018) in their review article on trends in the removal of
micropollutants from wastewater, in which the authors mentioned that drug contamination
was rarely investigated by scientists prior to 2015. Moreover, in those years, there was no
highly sensitive analytical equipment to deal with these cases in many countries [54]. Thus,
it can also be deduced that the removal of pharmaceuticals from wastewater is currently a
relevant topic for the scientific community. According to Kalaboka et al. (2020), in addition
to classical pollutants, the appearance of emerging contaminants such as pharmaceuticals
has attracted increasing interest in the field of environmental research, since these pollutants
have been frequently detected in different aquatic environments. [55] At the same time,
the interest from part of the scientific community in searching for efficient techniques to
remove pharmaceuticals from hospital wastewater before its discharge into sewers or water
bodies has greatly increased in recent years [56,57].
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On the other hand, in wastewater, the most detected and studied PhCs belong to ther-
apeutic classes such as antibiotics, analgesics, hormones, and antiepileptics. Additionally,
lipid regulators, beta-blockers, radiocontrast agents, and psychotropics have been studied,
but to a lesser extent [33]. Although there a large number of PhCs are detected in wastewa-
ter, this review considers only those most frequently detected at concentrations that may
represent a threat to the environment according to the literature. Based on the aforemen-
tioned criteria, 16 PhCs were selected as the main focus of this research: 6 antibiotics (i.e.,
ciprofloxacin (CIP), norfloxacin (NOR), ofloxacin (OFL), enrofloxacin (ENR), sulfamethoxa-
zole (SMX), and sulfadiazine (SDZ)); 1 antiepileptic (i.e., carbamazepine (CBZ)); 5 analgesics
(i.e., paracetamol or acetaminophen (ACE), diclofenac (DCF), ibuprofen (IBU), naproxen
(NPX), and ketoprofen (KET)); and 4 hormones (i.e., estrone (E1), 17-β-estradiol (E2), estriol
(E3), and 17α-ethinylestradiol (EE2)). Below is the analysis performed to establish the types
of pharmaceutical drugs present in MWW and HWW. It should be noted that the data were
taken only from the research articles shown in Table S1.

Tables 2 and 3 show the presence of pharmaceuticals in wastewater, where antibiotics
have been evidenced in several studies. These are commonly used PhCs that protect
animals and humans from diseases and infections caused by bacteria [58]. Likewise,
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Cristóvão et al. (2020) emphasized that special interest should be given to antibiotics
since they are widely consumed drugs, persist in wastewater treatment, and facilitate the
development of antibiotic-resistant bacteria, which may cause harmful effects on human
and environmental health [39]. In this study, the highest antibiotic concentrations in MWW
reported in the studies reviewed ranged from 27 to 4200 ng/L for CIP and from 12 to 7800
ng/L for SMX. As for HWW, the concentration ranges were 70–561,000 ng/L for NOR,
124,000–198,000 ng/L for OFL, and 120–120,000 ng/L for CIP. In general, all antibiotic
concentrations in HWW were higher than in MWW, with CIP and SMX being the most
frequently detected drugs (Figure 4a). These results were consistent with previous studies
that showed that the concentrations of antibiotics in HWW were 3–10 times higher than
those in MWW [37,59]. In the same context, Kutuzova et al. (2021) noted that the most
frequently detected antibiotics in wastewater were SMX and CIP [60].

Table 2. Concentration ranges of pharmaceuticals present in the influent of municipal WWTPs.

Class of
Pharmaceuticals Pharmaceutical Drug Concentration Range

(ng/L) Reference

Antibiotic CIP 27–4200 [30,32,33,40,46,52]
NOR 14–620 [30,32]
OFL 58–1020 [30,32,52]
ENR 8–27 [30,32]
SMX 12–7800 [30,33,37,45,52]
SDZ 70–410 [32,37]

Antiepileptic CBZ 96–6500 [30,33,40,41,45,46,51,52]
Analgesic ACE 156.4–623,000 [33,45,46,52]

DCF 6–410000 [33,41,42,45–47,51,52]
IBU 50–147,500 [33,41,42,45,47,51,52]
NPX 60–1,370,000 [33,41,47,51,52]
KET 10–260,000 [33,47,51,52]

Hormones E1 78–158 [30]
E2 11–54 [30]
E3 42–162 [30]

Table 3. Concentration ranges of pharmaceuticals present in the influent of hospital WWTPs.

Class of
Pharmaceuticals Pharmaceutical Drug Concentration Range

(ng/L) Reference

Antibiotic CIP 120–120,000 [24,26,38,40]
NOR 70–561,000 [24,38]
OFL 124000–198,000 [24,38]
SMX 30–20590 [23,26,37]
SDZ 565.3–3440 [23,37]

Antiepileptic CBZ 41.1–880 [23,26,40]
Analgesic ACE 2660–119,500 [24,26,44]

DCF 590–166,000 [23,42,44]
IBU 330–63370 [24,42,44]
KET 650–700 [24]

Hormones E1 4–53 [24]
E2 1–80 [24,44]
E3 27–1480 [24]

EE2 881–9833 [24]

Similarly, the class of antiepileptic drugs—also known as anticonvulsants—comprises
drugs that are often used to treat people with epilepsy or other particular mental disor-
ders [61]. As shown in Tables 2 and 3, the concentrations of the antiepileptic CBZ ranged
from 96 ng/L to 6500 ng/L in MWW and from 41.1 ng/L to 880 ng/L in HWW, representing
the third most frequently detected class of pharmaceutical (Figure 4a). Concerning the
above, Nkoom et al. (2019) argued that CBZ is the most studied antiepileptic drug by the
scientific community due to its low biodegradability, high consumption, and low removal
efficiency in wastewater treatment plants [62].

Another class of pharmaceuticals present in wastewater is analgesics, which are used
for pain relief and are considered to be important environmental pollutants [58]. The data
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shown in Tables 2 and 3 evidence high concentrations of all analgesic drugs, with the
highest values for contaminants such as NPX (60–1,370,000 ng/L), ACE (156.4–623,000
ng/L), and DCF (6–410,000 ng/L) in MWW. Regarding HWW, the contaminants with the
highest concentrations were DCF (590–166,000 ng/L) and ACE (2660–119,500 ng/L). In
addition, all analgesics were more concentrated in MWW, where they represented the
most frequently detected class of pharmaceuticals (Figure 4b). The results found were
consistent with the findings of Kermia et al. (2016), who noted that analgesics are the most
frequently detected pharmaceuticals in wastewater due to their high consumption and
the fact that they are sold without a medical prescription [63]. Hormonal drug classes are
known because they may cause endocrine disorders and affect the sexual and reproductive
systems of species such as fish [58,64]. In this research, the ranges of influent concentrations
of E1, E2, and E3 were 78–158, 11–54, and 42-162 ng/L, respectively, in MWW. In HWW,
the influent concentrations of E1 and E2 were similar to the data found for MWW; however,
higher concentrations were evidenced for E3 (27–1480 ng/L) and EE2 (881–9833 ng/L). In
this type of wastewater, hormones were the least frequently detected drug class (Figure 4b)
and had the lowest concentrations compared to the other compounds. These findings were
similar to those obtained by another author [65].

The data in Table 4 show the percentages of pharmaceutical removal in terms of
removal techniques based on physical treatment methods, where reverse osmosis stands
out, with removal rates ranging from 96% to 99.9% for pharmaceutical products such as
OFL, SMX, CBZ, and DCF in studies with a pre-experimental design [48]. On the other
hand, Farrokh Shad et al. (2019), in a study with a quasi-experimental design, reaffirmed
the high removal of this technique regarding the aforementioned contaminants, along with
the complete removal of hormones such as E1 and E2 [29].
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Table 4. Removal of pharmaceuticals by physical treatment methods.

Research Design Technique Class of
Pharmaceuticals

Pharmaceutical
Drug

Type of
Wastewater

Initial Concentration
(ng/L)

Removal
Efficiency (%) Reference

Pre–
experimental Reverse osmosis

Antibiotic OFL

Municipal

134 99.9 [48]
SMX 150 99.9 [48]

Antiepileptic CBZ 78/4687 77 [41]
412 96.1 [48]

Analgesic DCF 34/288 96 [41]
86 99.9 [48]

IBU 9/1184 58.3 [41]
78 8.9 [48]

NPX 57/1311 54.1 [41]
144 22.9 [48]

KET 616 71.1 [48]

Quasi-
experimental

Reverse osmosis

Antibiotic CIP

Municipal

570 88.6 [29]
SMX 920 95.9 [29]

Antiepileptic CBZ 200 95.7 [29]
Analgesic ACE 27,000 59.3 [29]

DCF 160 71.3 [29]
IBU 12,000 79.2 [29]
NPX 8900 83.1 [29]

Hormones E1 160 100 [29]
E2 51 100 [29]

Nanofiltration

Antibiotic CIP

Municipal

135 /3150 99 [39]
SMX 1000 48 [27]

1000 95 [27]
1000 96 [27]

Analgesic ACE 1000 38 [27]
1000 78 [27]
1000 85 [27]

DCF 300 58 [27]
300 97 [27]
300 99 [27]

IBU 1000 48 [27]
1000 84 [27]
1000 88 [27]

NPX 300 55 [27]
300 96 [27]
300 99 [27]

Adsorption by
granular activated

carbon (GAC)

Antibiotic SMX

Municipal

200,000 51 [31]
Antiepileptic CBZ 200,000 68 [31]

Analgesic ACE 200,000 88 [31]
DCF 200,000 48 [31]
NPX 200,000 55 [31]
KET 200,000 50 [31]

Pure
experimental

Adsorption with
powdered activated

carbon (PAC)

Hormones E1
Municipal

3.95 34.4 [49]
E2 4.68 83.3 [49]

EE2 0.24 99.9 [49]



Int. J. Environ. Res. Public Health 2022, 19, 13105 13 of 24

Additionally, in research with a quasi-experimental design, the nanofiltration tech-
nique showed removal efficiency similar to that of reverse osmosis. Garcia-Ivars et al.
(2017), in their study, managed to remove contaminants in the range of 85% to 99% for
pharmaceutical drugs such as SMX, ACE, DCF, IBU, and NPX. In this sense, the authors
indicated that removal efficiency was related to the membrane pore size, demonstrating
higher efficiency of removal in membranes with the smallest pore size [27], as was also
identified in previous research [66,67]. According to Azizi et al. (2022), reverse osmosis
uses a smaller pore size than nanofiltration, making it more efficient; however, because
nanofiltration has a lower long-term cost overrun, it is commonly considered an appropriate
technique as well [68].

For this research, adsorption by granular activated carbon showed low removal rates
of antibiotics, antiepileptics, and most analgesics [31]. On the other hand, Sun et al. (2017),
in a study with a pure experimental design, employed adsorption by powdered activated
carbon for the removal of hormones, achieving removal rates of 34.4%, 83.3%, and 99. 9%
for E1, E2, and EE2, respectively [49]. However, the applicability of these techniques at
larger scales cannot be affirmed, since the literature indicates that adsorption is a practical
process but it is mostly performed in studies with a pure experimental design, and there
has been no evaluation of the cost of materials for large-scale operation [69].

Table 5 shows the removal of pharmaceuticals by chemical treatment methods. In this
regard, no studies with a pre-experimental design were found in this research, and this
is consistent with the findings of Benstoem et al. (2017), who mentioned that, as this is a
relatively new topic, there are only studies using ozonation to remove pharmaceuticals
on a large scale in countries with strict regulations, such as Switzerland [70]. Similarly,
photocatalysis has not yet been evaluated on a large scale at present [17].

Table 5. Removal of pharmaceuticals by chemical treatment methods.

Research Design Technique Class Of
Pharmaceuticals

Pharmaceutical
Drug

Type Of
Wastewater

Initial
Concentration

(ng/L)

Removal
Efficiency (%) Reference

Quasi-
experimental Ozonation Antibiotic SMX Hospital 960 90 [25]

Antiepileptic CBZ 80 90 [25]
Hormones E1

Municipal
3.95 95.7 [49]

E2 4.68 99.9 [49]
EE2 0.24 99.9 [49]

Pure
experimental

Heterogeneous TiO2
photocatalysis

Antibiotic ENR Municipal 1,000,000 80 [35]
SDZ 1,000,000 100 [35]

Ozonation Antibiotic SMX Hospital 750 90 [25]

Municipal 263 86 [34]
263 91 [34]

Antiepileptic CBZ Hospital 30 90 [25]

Municipal 894 100 [34]
894 100 [34]

Analgesic DCF Municipal 1138 98 [34]
1138 99 [34]

IBU Hospital 850 90 [25]
878 48 [34]

NPX Municipal 772 96 [34]

Heterogeneous TiO2
photocatalysis

Antibiotic CIP Hospital 3,000,000 86.6 [43]
SMX Municipal 100,000 87 [28]

190,000 21 [50]
Antiepileptic CBZ Municipal 198,000 27 [50]

Analgesic DCF Municipal 194,000 49 [50]

In studies with a quasi-experimental design, the technique with the highest removal
percentages was ozonation, showing values of 90% for SMX and CBZ [25] and values above
95% for the hormones E1, E2, and EE2 [49]. In studies with a pure experimental design,
the same technique positively eliminated the aforementioned pharmaceuticals and, in the
study by Dogruel et al. (2020), even CBZ was eliminated, while pharmaceuticals such as
DCF and NPX were eliminated by more than 96% [34]. In other studies, high percentages
of drugs such as CBZ, SMX, and DCF have also been eliminated using different doses of
ozone [71]. Regarding the heterogeneous TiO2 photocatalysis technique, all of the studies



Int. J. Environ. Res. Public Health 2022, 19, 13105 14 of 24

analyzed the elimination of only one or two drugs, enriching their initial concentrations
(from 100,000 ng/L to 3,000,000 ng/L) [28,35,43,50]. In this regard, one study reported
that this type of technique is more efficient when applied at higher concentrations [66].
Conversely, for Krishnan et al. (2021), this would represent a situation to be improved,
because these initial concentrations are very high compared to those found in reality [12].
In this regard, in studies with a pure experimental design, Karaolia et al. (2018) removed
87% of SMX [28], while another study removed only 21% of the same drug [50]. This
difference may have been because these studies were carried out in real wastewater, which
may have different characteristics and other compounds present that also react with the
radicals formed in the process [72].

According to Table 6, among the biological treatment methods, the activated sludge
technique was the most widely used in the studies analyzed, which is consistent with the
findings of several studies indicating that biological treatments are widely used and that
activated sludge is the most widely used technique in the world [4,8,10]. This technique
presented the highest number of pharmaceuticals to be eliminated, with very variable
removal data. In studies with a pre-experimental design, this technique was able to remove
antibiotics and analgesics at rates above 90% [24,26,33]. On the other hand, drugs such as
the antiepileptic CBZ [23,33,41] and hormones [24] had low removal percentages—results
that were consistent with those reviewed in other studies [73].

In the studies that used the membrane bioreactor technique, there were no remark-
able removals except for the findings of Wang et al. (2018), who were able to eliminate
hormones such as E1, E2, and E3 at rates of more than 82% during their study with a
quasi-experimental design [30]. However, another study considered this technique to be
more effective than that of activated sludge, so it should be further investigated [17].

Regarding the high-rate algal pond (HRAP) technique, it can be inferred that the
three studies that employed this technique, using a quasi-experimental design, obtained
low removal rates for all pharmaceuticals except for ACE (removal between 94.4 and
100%) [36,45,46]—results that were consistent with the findings of Vassalle et al. (2020)
who, in their quasi-experimental study, concluded that HRAP was a natural treatment
technique with low cost, which was viable for small populations and presented highly
variable removal efficiencies [74].

In general, it was evident that these techniques were not entirely outstanding, the
main reasons for which were detailed in the scientific literature, including the fact that they
were not designed to eliminate these contaminants and that their efficiency greatly depends
on the properties of each pharmaceutical drug—such as its biodegradability—as well as on
the climatic conditions [6,41]. For example, in a study using the activated sludge technique,
the removal of pharmaceuticals was over 73%, and this was attributed to the high levels
of sunlight at the study site [26]. In contrast, in a study using the membrane bioreactor
technique at a site with low temperatures, pharmaceuticals were only removed in the range
of 25–38% [53]. In addition, Aydin et al. (2019) previously concluded that higher water
temperatures can contribute to enhancing microbial biodegradation activity [75].

It should be noted that biological treatment techniques showed negative removal rates
for drugs such as SMX, SDZ, and CBZ (Table 6), indicating that these micropollutants
had higher concentrations in the effluents than in the influents; on this topic, Blair et al.
(2015) argued that among the reasons for the negative removal is the fact that drugs may
be enclosed in fecal particles, and when microbes break down these feces, the drugs are
released [76]. Another reason for this phenomenon is that the metabolites of the drugs
are transformed back into the original compounds by the action of microorganisms [77].
In addition, for Clara et al. (2004), negative removal rates were also attributed to daily
fluctuations in concentration during the sampling period [78].
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Table 6. Removal of pharmaceuticals by biological treatment methods.

Research Design Technique Class of
Pharmaceuticals

Pharmaceutical
Drug

Type of
Wastewater

Initial
Concentration

(ng/L)

Removal
Efficiency (%) Reference

Pre-experimental

Activated sludge

Antibiotic

CIP
Hospital

120/2000 49 [24]
120/9110 84 [24]

5600 99 [26]
2180 99 [26]

Municipal n.d./4200 78 [33]

NOR
Hospital 100/1530 71 [24]

70/820 41 [24]

SMX

Hospital <LOQ/2369 −32/77 [23]
30 96 [26]
132 99 [26]

Municipal n.d./5300 41 [33]

SDZ Hospital n.d./565.3 −22/99 [23]

Antiepileptic CBZ

Hospital 41.1/720.7 −116/-9 [23]
151 73 [26]
73 99 [26]

Municipal 820/6500 28 [33]
45/2394 -50 [41]

Analgesic

ACE

Hospital 21,270/119,500 88 [24]
11,060/57,650 93 [24]

12400 99 [26]
12300 98 [26]

Municipal 55,000/623,000 99 [33]

DCF
Municipal 460/6500 21 [33]

6/708 42.9 [41]
77.3 91.4 [51]

IBU

Hospital 330/53,400 68 [24]
1090/63370 97 [24]

Municipal 8000/53,000 99 [33]
128/147,500 98 [41]

434 99.9 [51]

NPX
Municipal n.d./38000 89 [33]

4910/ 521,700 98 [41]
444 97.4 [51]

KET

Hospital <LOQ/650 64 [24]
<LOQ/700 55 [24]

Municipal n.d./1700 85 [33]
39.1 51.4 [51]

Hormones

E1
Hospital 13/53 28 [24]

4/40 83 [24]

E2 8/35 35 [24]

E3
134/1480 32 [24]
27/512 77 [24]

EE2
2654/9833 76 [24]
881/1041 26 [24]

Membrane
bioreactor (MBR) Antibiotic

CIP Municipal 220 66 [32]
NOR 620 31 [32]
OFL 1020 25 [32]
ENR 27 15 [32]
SDZ 410 70 [32]
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Table 6. Cont.

Research Design Technique Class of
Pharmaceuticals

Pharmaceutical
Drug

Type of
Wastewater

Initial
Concentration

(ng/L)

Removal
Efficiency (%) Reference

Quasi-experimental

Membrane
bioreactor (MBR)

Antibiotic

CIP Municipal n.d./89 70.1 [30]
NOR 14/226 51.8 [30]
OFL 100/912 61.8 [30]
ENR n.d./89 52.7 [30]
SMX 12/92 72 [30]

Antiepileptic CBZ n.d./32 41 [30]
630 −25 [53]

Analgesic DCF 1840 38 [53]

Hormones
E1 78/158 88.2 [30]
E2 11/54 82 [30]
E3 42/162 95 [30]

High-rate algal
pond (HRAP)

Antibiotic
CIP

Municipal

332/710 68 [46]
SMX 69.4/902.5 50.5 [45]

Antiepileptic
CBZ 100/350 7.7 [36]

9.6/42.4 0 [45]
502/557 −14 [46]

Analgesic

ACE
210/120,000 94.4 [36]
156.4/7781.1 100 [45]

12,133/15,611 100 [46]
DCF 130/470 66.6 [36]

270.8/2117.8 54.8 [45]
732/1030 46 [46]

IBU 1400/4600 75.7 [36]
713.3/23811.4 79 [45]

NPX 3200/8100 46.3 [36]
KET 110/120 55.8 [36]

n.d.: Undetected. <LOQ: below the limit of quantification.

Finally, the analysis of the removal of pharmaceuticals from municipal wastewater is
shown in Figures 5–7; for hospital wastewater, it is shown in Table 7.

Considering Figure 5, the ozonation technique was the one that achieved the highest
removal percentages in studies with a pure experimental design, since it eliminated SMX,
CBZ, DCF, and NPX at rates of 86%, 100%, 98%, and 96%, respectively [34]. Similarly, the
technique that stood out for the removal of the hormones E2 (83.3%) and EE2 (99.9%) was
adsorption with powdered activated carbon [49].
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On the other hand, Figure 6 shows that, in studies with a quasi-experimental design,
the technique with the highest percentage of removal was reverse osmosis (from 59.3% to
100%). Furthermore, this technique eliminated all classes of pharmaceuticals included in
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this study [29]. Likewise, techniques such as ozonation and membrane bioreactors resulted
in hormone removal rates greater than 95.7% and 82%, respectively [30,49].
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experimental design (M01 = [27], M03 = [29], M05 = [31], M17 = [49], M09 = [35], M04 = [30],
M10 = [36]).

Regarding Figure 7, in studies with a pre-experimental design, the reverse osmosis
technique had higher removal percentages compared to the activated sludge and membrane
bioreactor techniques for antibiotics and, in particular, for CBZ, since the latter was removed
by 96.1% compared to the removal rates of −50 and 28% achieved by the studies using
the activated sludge technique to remove the same compound [41,48]. However, the
removal of analgesic drugs such as IBU and NPX was higher in the studies using activated
sludge (higher than 89%) than in the studies using reverse osmosis (maximum values of
58.3%) [33,41,51].
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Table 7. Removal of pharmaceuticals from hospital wastewater.

Research Design Techniques Class of
Pharmaceuticals

Pharmaceutical
Drug

Removal
Efficiency (%) Reference

Pre-experimental Activated sludge

Antibiotic

CIP

49 [24]
84 [24]
99 [26]
99 [26]

NOR
71 [24]
41 [24]

SMX −32/77 [23]
96 [26]
99 [26]

SDZ −22/99 [23]

Antiepileptic CBZ
−116/−9 [23]

73 [26]
99 [26]

Analgesic

ACE 88 [24]
93 [24]
99 [26]
98 [26]

IBU
68 [24]
97 [24]

KET
64 [24]
55 [24]

Hormones

E1
28 [24]
83 [24]

E2 35 [24]

E3
32 [24]
77 [24]

EE2
76 [24]
26 [24]

Quasi-
experimental Ozonation

Antibiotic SMX 90 [25]

Antiepileptic CBZ 90 [25]

Pure
experimental

Ozonation

Antibiotic SMX 90 [25]

Antiepileptic CBZ 90 [25]

Analgesic IBU 90 [25]

Heterogeneous TiO2
photocatalysis Antibiotic CIP 86.6 [43]

Although studies with pure experimental and quasi-experimental designs indeed
achieved significant levels of removal, it should be taken into account that the studies with
a pre-experimental design had gone through a series of procedures to be implemented on
a large scale or in the field, so it is feasible to discuss and contrast them [79]. Therefore,
as mentioned above, large-scale wastewater treatments use primary treatment; secondary
treatment (the most commonly used technique is activated sludge) and tertiary treatment
(such as reverse osmosis, for example) are used if more purified wastewater is required to
avoid contamination of water bodies or if the water is to be reused [41].

Therefore, several studies have shown that the activated sludge technique removes
pharmaceuticals variably, and completely eliminates biodegradable pharmaceuticals such
as ACE in municipal wastewater [50,80], but those that are more resistant to
biodegradation—such as CBZ and SMX, among others—require a tertiary treatment for
their elimination, such as reverse osmosis [48,80].

One of the reviewed studies concluded that reverse osmosis was efficient in the
removal of a wide variety of pharmaceutical drugs; however, at the same time, it indicated
that this technique had a deficiency due to the generation of a concentrated phase containing
the drugs [41]. Regarding this deficiency, a review of membrane separation processes
indicated that this concentrate should be sustainably managed and that advanced oxidation
processes can be effectively applied to it [66]. However, according to De Ilurdoz et al. (2022),
the advantages of this technique outweigh its disadvantages, since its large-scale application
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is effective in countries such as Spain and Croatia, demonstrating the complete removal of
antibiotics [79].

Table 7 shows that the removal of pharmaceuticals from hospital wastewater has been
investigated to a lesser extent, and this is because in many countries such wastewater is
discharged into the sewers and treated together with municipal wastewater [8]. However,
hospitals are considered to be a major source of pharmaceutical contamination, so treating
them separately would be appropriate, as some pharmaceuticals may be present in high
concentrations and would, therefore, be easier to treat [15,56].

Likewise, Table 7 shows that activated sludge removal techniques have been applied
in studies with a pre-experimental design. Consequently, this technique resulted in the
removal of antibiotics and analgesics in the range of 41% to 99% [23,24,26], although there
was evidence of low removal of CBZ (range: −116 to −9%) and hormones, with very
variable percentages [23,24]. From another perspective, techniques such as ozonation and
photocatalysis have been investigated to remove pharmaceuticals from these waters, but
the studies were conducted with a pure experimental design, so it cannot be asserted
that the removal rates of over 86.6% achieved by these techniques would be the same in
pre-experimental designs [25,43].

Tulashie et al. (2018) also reported that hospital effluent treatment studies have been
conducted using techniques such as membrane filtration, activated carbon adsorption, and
advanced oxidation processes. However, these techniques were found to be expensive and
difficult to operate, especially in hospitals established in developing countries seeking to
treat these effluents [15]. In contrast, techniques based on biological methods can produce
effluents that preserve water quality standards at a reasonable cost for these facilities [41].

On the other hand, one study determined that membrane bioreactors are a viable
technique to remove pharmaceuticals from hospital wastewater [58], but this study did
not include articles that used this technique—possibly due to the exclusion criteria, which
left out studies that used synthetic wastewater as a matrix. Incidentally, Taoufik et al.
(2021) indicated that the membrane bioreactor technique shows greater removal of certain
classes of pharmaceuticals than the activated sludge technique, but the difference was not
extreme [17].

After reviewing the literature, it became evident that the physical methods evaluated
show a recovery (i.e., removal of the drug from the aqueous matrix) of contaminants close to
100%, as is the case for reverse osmosis, so it would be convenient to propose an evaluation
of the existing treatment methods for the recovered substances in order to fully complement
their elimination. On the other hand, the evaluation of chemical and biological methods
implies non-detection as an active principle, but it does not mean that the byproducts
generated can potentially constitute equal or greater contaminants than the original active
principle, as reported by Sun et al. (2021), who identified up to seven possible degradation
products of tetracycline using Phanerochaete chrysosporium, where the transformation path-
ways included demethylation, dimethylamino oxidation, decarbonylation, hydroxylation,
and oxidative dehydrogenation [81]. On the other hand, in the case of treatments using
advanced oxidation processes, García-Galán et al. (2020) noted the possibility of potential
ecotoxicity of the products generated during the transformation, which could generate a
route of entry of substances into aquatic ecosystems and, consequently, problems of bioac-
cumulation and/or biomagnification [45]. The same authors evaluated the degradation
of the antidepressant venlafaxine and its main metabolite O-desmethylvenlafaxine using
advanced oxidation with UV/H2O2, removing about 99.9% of the compound, but at the
same time identifying 11 and 6 transformation products, respectively [82].

Therefore, not only the presence or absence of the original substances, but also the
possible metabolites generated and their possible synergistic effects that could be generated
in the water bodies should be evaluated. In this sense, the research included in this review
is not conclusive regarding the possible substances formed during the application of the
treatment methods, so the conclusions on the efficiency of elimination are based exclusively
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on the capacity of the techniques to remove substances from the aqueous phase or to
transform the bioactive species into others that are theoretically less harmful.

4. Conclusions

This investigation identified the types of drugs with the greatest presence in
wastewater—analgesics and antibiotics, followed by antiepileptics and hormones with
lower detection frequencies—highlighting the high concentrations of analgesics such as
naproxen and paracetamol in municipal wastewater, as well as the high concentrations
of antibiotics such as norfloxacin and ofloxacin in hospital wastewater. The most efficient
methods for the elimination of drugs were physical ones such as the reverse osmosis and
nanofiltration techniques, which reached removal rates ranging from 96 to 99.9% and from
85 to 99%, respectively; similarly, within the chemical methods, the best technique was
ozonation, which achieved removal rates in the range of 90 to 99% for the proposed drugs,
compared to biological methods, where the activated sludge technique showed highly
variable removal rates depending on the characteristics of each drug (from 50 to 99 %),
although it can be considered a good alternative to eliminate biodegradable drugs. The
most efficient technique to eliminate drugs in municipal wastewater was reverse osmosis,
achieving removal rates from 96% to 99.9% for ofloxacin, sulfamethoxazole, carbamazepine,
and diclofenac; similarly, the most efficient technique for the removal of a wide variety of
these drugs from hospital wastewater was activated sludge, since it eliminated analgesics
and antibiotics in the range of 41–99%, but with lower efficiencies for antiepileptics and
hormones. For future work, it is recommended to conduct a review of hybrid techniques
to remove drugs from wastewater, since they could make up for the deficiencies of the
individual techniques. To carry out a more in-depth analysis of drug removal techniques
for municipal and hospital wastewaters, it would be convenient to search for articles in
other databases and analyze closed-access studies.
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