Theory of machine learning based on nonrelativistic quantum mechanics
Publisher
World Scientific
Journal
International Journal of Quantum Information
Additional Links
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108575681&doi=10.1142%2fS0219749921410045&partnerID=40&md5=ad8550ea02b8341f3f1f8d8f23089616Abstract
The goal of this paper is the presentation of the elementary procedures that normally are done in nonrelativistic Quantum Mechanics in terms of the principles of Machine Learning. In essence, this paper discusses Mitchell's criteria, whose block fundamental dictates that the universal evolution of any system is composed by three fundamental steps: (i) Task, (ii) Performance and (iii) Experience. In this paper, the quantum mechanics formalism reflected on the usage of evolution operator and Green's function are assumed to be part of mechanisms that are inherently engaged to the Machine Learning philosophy. The action for measuring observables through experiments and the intrinsic apparition of statistical or systematic errors are discussed in terms of "quantum learning". © 2021 World Scientific Publishing Company.
Type
info:eu-repo/semantics/article
Rights
info:eu-repo/semantics/restrictedAccess
Language
spa
Description
El documento a texto completo no se encuentra disponible en el Repositorio de la Universidad Autónoma del Perú debido a las restricciones de la casa editorial donde se encuentra publicada.
ISSN
2197499
Collections
- Ingeniería de Sistemas [300]